High resolution/high frequency observing and data reduction

Anita Richards UK ALMA Regional Centre Jodrell Bank Centre for Astrophysics University of Manchester thanks to ALMA and JBCA colleagues

.MA

Weighting

- Natural weighting: Grid and FT samples
 - Weight zero in grid cells with no samples
- Uniform weighting:
 - All cells same weight
 - Makes resolution finer, but increases noise
- Robust [-2, 2]: intermediate weightings
- Taper: reduce weight of longest baselines
 - Increase sensitivity to large-scale emission
 - Increases noise if effective collecting area reduced

Outline

- High-frequency observing
 - Hazards
- Calibration
 - Instrumental measurements
 - Astrophysical standards and phase referencing
 - Self-calibration
- Imaging
 - Clean
 - Weighting
- ALMA data products

ALMA, NOEMA etc.

(a) Steerable dishes
(b) Subreflector
(c) (Multiple) receivers cabin
(d) Optical fibre links to correlator
(e) Reconfigurable

Also SMA \geq 0.45 mm; VLA \geq 6 mm; ATCA \geq 3mm; KVN \geq 2.5mm

core lobe

Delay

errors

(timing)

geom

Close to AGN: Scintillation

Lobes (and ionosphere) Faraday rotation

Galactic CO etc.

Atmospheric H_2O vapour (also O_3 etc.) Absorption – reduces S/N Refraction - phase rotation

Antenna positions, efficiency, pointing

Atmospheric emission noise System (electronic) noise System (unit of the system of the

Hazards

RFI

000

Bandpass response (

(sub-)mm windows & bands

Frequency (GHz)

Receiver temperatures

- Combined ϕ depends on $\delta \textbf{s}$
- Complex visibility amplitude is sinusoidal function of $\boldsymbol{\phi}$

Earth rotates

- Telescopes separated by baseline B_{geom}
- Earth rotates
 - Projected separation $b = B_{geom} \cos \theta_0$
- Samples different scales of source
- Additional geometric delay path Δ
 - Remove in correlator

Earth rotation aperture synthesis

- Combined ϕ depends on $\delta s(time)$

(3)

(2)

core

lobe

- Complex visibility amplitude is sinusoidal function of $\boldsymbol{\phi}$

1/06

1/04

Interferometry to images

- Correlation makes complex visibilities $V_v(u_v, v_v)$
 - One V, $Ae^{i\phi}$, per v-chan per baseline per τ_{int} per pol.
- Fourier transform gives sky brightness distribution $\sum V_{v}(u_{v},v_{v}) e^{[2\pi i(uvl + vvm)]} du dv = I_{v}(l,m)$

or $V(u,v) \Leftrightarrow I_v(l,m)$ for short

- Sensitivity: $\sigma_{rms} \propto \frac{I_{sys}}{\sqrt{N(N-1)/2} \delta v \Delta t N_{pol}}$
 - Number antennas

Source

- dv freq. width per image, Δt total time on source

High-frequency considerations

- Same principles as any radio interferometry
- You are *unlikely* to be bothered by:
 - Ionosphere ($\delta delay_{ionosphere} \propto \lambda^2$)
 - Confusion ($\Theta_{PrimaryBeam} \sim \lambda/B \sim 55''$ @ 3mm, 12-m dish)
 - Most bright extragal. sources have α <0 where $S \propto v^{\alpha}$
- You *will* suffer from:
 - Tropospheric refraction ($\delta\phi_{troposphere} \propto 1/\lambda$)
 - Tropospheric absorption and emission
 - Small field of view ($\Theta_{PrimaryBeam} \sim 9'' \oplus 0.45 \text{ mm}$)
 - Mosaicing

High-frequency considerations

- Small field of view ($\Theta_{PrimaryBeam} \sim 9'' \oplus 0.45 \text{ mm}$)
 - Mosaicing

Estimate observability from low-res image

- Brightness temperature $T_{\rm b} = S_{\rm source} 10^{-26} \lambda^2 / 2k_{\rm B} \Omega$
 - $-\Omega$ emitting area (sr), λ (m), S (Jy)
 - Resolved? Use S per measured Ω
 - Unresolved by low-resolution obs. e.g. single dish? – Estimate actual source size for Ω
 - Use S per best estimate of Ω to find $T_{\rm b}$
 - Predict ALMA flux density $S_{ALMA} = T_b 2k_B \theta_b^2 / 10^{-26} \lambda^2$
 - Substitute $\Omega = \theta_b^2$ (ALMA synthesised beam)
 - Use **Sensitivity Calculator** need $>5\sigma_{rms}$ on peak
- e.g. total source 1 Jy, $\sqrt{\Omega}$ =15", $T_{\rm b}$ ~0.07 K at λ 1mm

Estimate observability from low-res image

- Brightness temperature $T_{\rm b} = S_{\rm source} \ 10^{-26} \ \lambda^2 \ / \ 2k_{\rm B} \ \Omega$
 - Ω emitting area (sr), λ (m), S (Jy)
 - Resolved? Use S per measured Ω
 - Unresolved by low-resolution obs. e.g. single dish?
 Estimate actual source size for Ω
 - Use S per best estimate of Ω to find $T_{\rm b}$
 - Predict ALMA flux density $S_{ALMA} = T_b 2k_B \theta_b^2 / 10^{-26} \lambda^2$
 - Substitute $\Omega = \theta_b^2$ (ALMA synthesised beam) •

– Use **Sensitivity Calculator** - need $>5\sigma_{rms}$ on peak

- e.g. total source 1 Jy, $\sqrt{\Omega}$ =15", $T_{\rm b}$ ~0.07 K at λ 1mm
 - $-\theta_{b}=0$ ".15, flux density 1x(15/0.15)² = 0.0001 Jy/beam

Visibility plane coverage

- ALMA main array: – fifty 12-m antennas
- ALMA Compact Array:
 - twelve 7-m antennas
 - four 12-m antennas for total power

10

5

-5

-10

-15-15

v (k.)

Combining arrays

Correlator configurations

- Two sidebands, fixed spacing depending on band
 - e.g. B7, B3 sideband centres separated by 12 GHz
 - Max. continuous b/w <4 GHz (8 GHz Bands 9, 10)

- Four basebands (BB), max. width 2 GHz
 - 128 chans per BB (dual pol) TDM
 - 4096 chans per BB (~0.5 km/s at 300 GHz) FDM
 - Useful max. 1.875 GHz (so 3840 channels usable)
- Narrower spectral windows for higher resolution
 - Factors of two down to 62.5 MHz (15.25 kHz chans)
 - Higher spectral resolution in single polarization
- See documentation and OT for full details

Correlator configurations

- Two sidebands, fixed spacing depending on band
 - e.g. B7, B3 sideband centres separated by 12 GHz
 - Max. continuous b/w <4 GHz (8 GHz Bands 9, 10)

- Four basebands (BB), max. width 2 GHz
 - 128 chans per BB (dual pol) TDM
 - 4096 chans per BB (~0.5 km/s at 300 GHz) FDM
 - Useful max. 1.875 GHz (so 3840 channels usable)
- Narrower spectral windows for higher resolution
 - Factors of two down to 62.5 MHz (15.25 kHz chans)
 - Higher spectral resolution in single polarization
- See documentation and OT for full details

Instrumental & atmospheric noise

• Noise σ_{sys} is given by $\sigma_{sys} = \frac{T_{sys}}{\eta_A A_{eff} \sqrt{N(N-1)/2} \Delta v \Delta t N_{pol}}$ antenna area A_{eff} , efficiency η_A

N antennas, frequency span Δv , time span Δt , N_{pol} Rx pols

• System temperature T_{sys} $T_{sys}(DSB) = \frac{1+g_{SB}}{\eta_A e^{-\tau_{atm}}} [T_{Rx} + \eta_A T_{sky} + (1-\eta_A) T_{amb}]$

contributions from Receiver, sky and 'ambient' e.g. hardware, ground temperature

- $g_{SB} = 1$ if there is an unwanted if sideband
- Noise increases exponentially with opacity and zenith angle

$$T_{received} = T_{source} e^{\tau_{atm}/\cos z} + T_{atm} (1 - e^{\tau_{atm}/\cos z})$$

Absorption and emission

The atmosphere both absorbs the astrophysical signal, and adds noise

$$T_{received} = T_{source} e^{\tau_{atm}/\cos z} + T_{atm} (1 - e^{\tau_{atm}/\cos z})$$

where the source would provide temperature T if measured above the atmosphere and z is the zenith distance

- Same source, same baselines
 - Raw amps lower at higher **P**reciptable **W**ater **V**apour

Phase errors cause position errors

 Averaging over phase fluctuations causes decorrelation of amplitudes

– Visibility
$$V = V_o e^{i^{\varphi}}$$

$$\langle V \rangle = V_o \langle e^{i \varphi} \rangle = V_o e^{-(\varphi_{rms}^2)/2}$$

 ϕ_{rms} in radians Lose 9% amplitude for 5° ϕ_{rms}

- Fluctuations on time-scales

 of few sec: raw data position jitter_{0.4}
- Water Vapour Radiometry
 - Measure PWV, each antenna, every ~second
 - Calculate phase delay
 - Apply corrections to all observed data

Atmosphere

- 'Dry' component:
 Worst O₂, O₃
- 'Wet' component:
 H₂O vapour/clouds
 - Highly turbulent layer
 - Measure PWV = precipitable water vapour
- Atmospheric depth increases at lower elevation
 - Larger zenith distances z

Column density as function of altitude

- Isoplanatic patch > sky area above single mm antenna
- Antenna 2 3 separation < W, phase stable, noise rather correlated
- 1 2, 1 3 higher but less correlated phase fluctuations
- Baselines to 4 see higher but uncorrelated noise

Kolmogorov turbulence

Kolmogorov prediction (Coulman'90) $\varphi_{rms} = \frac{K}{\lambda} B^{\alpha}$ where K~100 at ALMA for λ in mm and α depends on the length of baseline B compared with W, the thickness of the turbulent layer

- Baseline 2-3 < *W*
 - Phase noise $\phi_{\rm rms}$ increases as $B^{5/6}$
- Baselines 1-2, 1-3 > W but < OS: $\phi_{\rm rms} \propto B^{1/3}$
- Baselines 4-* in outer scale regime: ϕ_{rms} levels off

Water Vapour Radiometry

- PWV=precipitable water vapour
 - Changes refractive index, speed of radio propagation
 - Phase error
 - $\Phi_{\rm e} \propto (2\pi/\lambda) {\rm PWV} \ / \ T_{\rm atm}$
 - 1 mm PWV
 - ~ 0.7 mm extra path
 - ~ 0.0023 ns delay
 - Each ALMA 12-m has water vapour radiometer
 - Apply bulk correction during observations
 - Use ~1Hz WVR measurements to correct residual fluctuations on-line or during data processing
- PdBI measures PWV at 22 GHz, corrects amplitudes

Blue rectangles are the production WVR filters

PWV ~0.6, Band 9 raw 0.25 - 2.5 km baselines

12:18:20 Time

Measure total noise T_{sys}

- Measure T_{sys} using hot & cold loads
 - ALMA every few min, 128 channels per 2-GHz baseband
 - NOEMA per baseband
- Tracks atmospheric & instrumental fluctuations
 - Applied during data reduction

Timing and antenna position errors

Source

- Signals from off-centre source reach telescopes T1, T2 with a phase shift
 - Geometric delay δ needs to be removed and travel-time from T1 and T2 to correlator equalised to preserve astrophysical phase
 - Delays added per-antenna before correlation
 - 1 ns delay error = $1/10^9$

T2

 $- = \pi$ rad per GHz freq error

To correlator

- Causes of delay error include:
 - Timing error in correlator
 - Bad atmospheric model
 - Antenna position error

Antenna positions

DA41 position corrected during data processing DA50 ????

- Antenna positions measured after every move
 - May need updating
 - DA41 ~10 cm position error ~ 0.33 ns delay error
 - Also causes time-dependent phase error
 - Incorrect model for updating geometric delay

Delay error (rare in cycle >0)

- Phase across 2 GHz undergoes 6 full turns on one antenna
 - Delay error $6/2 \times 10^9 = 3$ ns

Timing and antenna position errors

DA41 position corrected

Calibration sources: flux density

- Primary flux calibration uses planets, moons, asteroids
 - Models and ephemerides available
 - Mostly negligible polarization

0.05

- Still often have to select short baselines!
- Beware planet/moon atmspheric lines
 - If no Solar System object, use monitored QSO

Calibration sources have lines too

Astrophysical calibration sources

- Calibrate amplitude and phase as a function of :
 - Frequency (delay and BandPass calibration)
 - Mostly instrumental errors, stable for hours
 - Solve per-channel for TDM, or average up to 20 GHz
 - Calibrator within 45°
 - Time (phase (& amplitude) referencing applied to target)
 - NB in practice use time & bandpass calibration for all calibrators, sometimes refine interatively
- Phase error ϕ radians gives fractional amp error ${\thicksim}\phi$
- Need signal/noise $S_{\text{calsource}}/\sigma_{\text{ant}} > 15$
 - ~1/15 radians ~ 7% amp decorrelation ~ 4° phase error
 - Average spw or transfer from wide to narrow if necessary

Astrophysical calibration sources

• Most errors are antenna based

$$\sigma_{ant}(\delta t, \delta v) \approx \sigma_{array} \sqrt{\frac{N(N-1)/2}{N-3}}$$

- + σ_{array} is noise in all-baseline data per interval
- e.g. 36 antennas, $\sigma_{\text{ant}} \sim$ 4.5 x map noise per interval/pol.
- Band 7: rms per TDM spw 1.875 GHz ~0.5 mJy/minute
 - x $\sqrt{2}$ per polarization ~0.7 mJy
 - x 15 (SNR) x 4.5 (per antenna) ~ 50 mJy
 In practice aim for ~ 100 mJy at B7, if possible
- More compact configs/low $\nu :$ within 10-15 deg
 - Cycle time 5-10 min
- Extended configs/high v: within ~4 deg
 - Cycle time 1-few min

Phase referencing

- Observe phase-ref source close to target
 - Point-like or with a good model
 - Close enough to see same atmosphere
 - ~2-15 degrees (isoplanatic patch)
 - Bright enough to get good SNR much quicker than atmospheric timescale $\boldsymbol{\tau}$
 - τ 10 min/30 s short/long *B* & low/high v
 - Nod on suitable timescale e.g. 5:0.5 min
 - Derive time-dependent corrections to make phase-ref data match model
 - Apply same corrections to target
 - Correct amplitudes similarly
- Self-calibration works on similar principle

Phase referencing

Target 3C277.1

Phase-ref 1300+580 ~3° from target Unresolved point

Source structure in uv plane

Extended source: more flux on short baselines

Visibility amplitudes

Baseline length in wavelengths (*uv* distance)

Point source: same flux density on all baselines (within errors)

UVDist L

1e+06

1.5e+06

2.5e+06

3e+06

3.5e+06

Phase-reference visibilities

Corrections for point model

Corrected phase-ref visibilities

Time-dependent (self-)calibration

- ALMA data are calibrated by observatory staff
 - Pipeline or scripts
 - Instrumental corrections are usually standard
 - You can refine them but not usually necessary
 - Sample images provided
- If target bright, you can self-calibrate
 - rule of thumb: worth trying if S/N > 20 in few min
 - Starting model is the image made by applying phase-ref (and previous) corrections
- You may also want to make images differently

Effects on imaging

-43°55'00"

10^h27^m56^e

12000 Declinatia

to^h27^m54^s 52^s 51^s 50^s 32000 Right Ascension

No astrophysical calibration: no source seen

Bandpass, phase-ref etc. solutions applied: S/N 20 Anti-symmetric artefacts dominate

- residual phase errors

Phase-only self-cal: S/N 40 Residual, symmetric amplitude errors

Amp & phase self-cal: S/N 50

Calibration: Measurement Equation basis for calibration in CASA

 $\underline{V}_{ij} = \mathbf{M}_{ij} \mathbf{B}_{ij} \mathbf{G}_{ij} \mathbf{D}_{ij} \mathbf{F}_{ij} \mathbf{$

Vectors

 \underline{V} isibility = f(u,v) \underline{I} mage to be calculated

Additive baseline error

Scalars

 $\frac{S}{P}$ (mapping \underline{I} to observer pol.)

l,m image plane coords *u,v* Fourier plane coords *i,j* telescope pair

Jones Matrices

Multiplicative baseline error

Bandpass response

Generalised electronic gain

Dterm (pol. leakage)

- E (antenna voltage pattern)
- Parallactic angle
- Tropospheric effects
- Faraday rotation

Polarization

Most (sub-)mm Rx use linear polarization X and Y combined in correlator

ALMA Band 3 (λ ~3mm) uses Ortho Mode Transducer

> Band 9 (λ ~0.45mm) uses wire grid

XX, YY for total intensity

XX, YY, XY, YX used to provide Stokes IQUV

Diagram thanks to Wikipaedia

ALMA polarization calibration

- Calibration source has unknown linear polarization
 - Gain solutions decomposed into X and Y per antenna

$$g_x' = g_x(1+Q/I)^{0.5}$$
 $g_y' = g_y(1-Q/I)^{0.5}$

- Leakage between X and Y feeds ('D'-terms)
- Feeds rotate on sky as alt-az antenna tracks source
 - Parallactic angle rotates
 - Q_{obs} time-dependent
- Known feed orientation
 - Directly correct pol. angle
 - Refine after leakage correction
- 3+ scans, >3hr HA coverage
 - Solve for leakage and source polarization

Cleaning

• Fourier transform the visibilities and the uv tracks

Cleaning

- Fourier transform the visibilities and the uv tracks
- Set a mask to include obvious emission

NGC 3256 dirty map

51^{\$}

ടറ^ട

36'

48"

00''

12"

74"

36"

48"

00"

54⁵

- CLEAN algorithm identifies brightest pixels
- Store e.g. 10% of each peak as Clean Component

Cleaning

 Iteratively subtract scaled dirty beam at positions of bright pixels

CLEANed image

• Improved signal-to-noise in final image

Residual is just noise
 Note different flux scale

CLEANed image

• Note improved signal-to-noise in image

 Final image is combination of residual and Clean Components convolved with restoring beam

Weighting

- Natural weighting: Grid and FT samples
 - Weight zero in grid cells with no samples
- Uniform weighting:
 - All cells same weight
 - Makes resolution finer, but increases noise
- Robust [-2, 2]: intermediate weightings
- Taper: reduce weight of longest baselines
 - Increase sensitivity to large-scale emission
 - Increases noise if effective collecting area reduced

Cleaning and the uv plane

NGC 3256 model coloured by baseline over black data

- *uv* model is Fourier transform of Clean Components
 - 'Major Cycles' subtract model from uv data and remake dirty residual image
- Compare model with data to assess quality
 - Use for further rounds of self-calibration

ALMA data processing

- Each SB self-contained
 - Pointing, flux scale, BP, (pol.) cal scans
 - ~20-40 mins target(s)/phase ref
 - Execute (EB) until sensitivity is reached
 - same spectral & array configuration
- Initial data processing (pipeline or staff script)
 - Convert ASDM to Measurement Set
 - Calibrate
 - Combine EBs for target imaging

What ALMA data do you get?

Images/cubes for principal science target channels

Data processing / pipeline scripts so you could tweak imaging/ self-cal using:

Science products & scripts might be all you need or you could use CASA scripts to regenerate edited, calibrated uv data

ASDM (one per EB)

Flag tables

Calibration tables

- Self-calibrate if bright enough (S/N $> \sim 20$ per scan)
- **Re-image**
 - Weighting for higher spatial sensitivity/lower resolution or v.v.
 - Change spectral resolution, make spectral index image etc. etc.....

ALMA observing terminology

- Scheduling Block: self-contained observation series
 - Short pointing, flux scale, bandpass, (pol.) cal scans
 - ~20-40 mins alternating between target(s)/ph ref(s)
 - Including multiple mosaic pointings
 - Execute (EB) until desired sensitivity is reached
 - All in same spectral and array configuration
 - Each EB produces one ASDM (ALMA Science Data Model) with binary data and lots of metadata
- Initial data processing (calibration, editing) per-EB
 - Convert ASDM to Measurement Set
- Combine EBs for final target imaging
- May also combine different SBs e.g. ACA+main

Individual scheduling block

CASA

- Common Astronomy Software Applications
 All ALMA, VLA and similar data reduction tasks
- Python wrapper to aips++ library
 - Access to toolkit, extensions for ALMA etc. fixes
- Uses Measurement Set format
 - Can be converted to/from FITS (some caveats)
 - Export images to use specialised analysis tools
- http://casa.nrao.edu/
 - Cookbook
 - CASA Guides
- https://casaguides.nrao.edu/index.php?title=Analysis_Utilities

(sub-)mm Interferometry Summary

- Atmospheric refraction/absorption dominates quality
 - Cold dry sites OK \leq 370 GHz, exceptional sites \leq 1 THz
 - Troposphere affects phase & amp on \geq 1s timescales
 - Instrumental calibration (WVR, T_{sys}) etc.
 - ALMA / NOEMA μJy sensitivity, 10 / 100 mas resolution
 - Good sites, many or large antennas
 - Sub-mJy sensitivity at sub-arcsec resolution
 - Extended sources need multiple arrays/SD fill in
 - Large fields need mosaicing
- Normally observe two separate sidebands
 May have 'mirror' or noise
- Plan night-time, dry season observing at λ sub-mm
- ALMA delivers calibrated data, sample images
 - May want to self-calibrate, reimage changing resolution