

International Centre for Radio Astronomy Research

Disentangling the radio emission from 'radio-quiet' quasars

> Sarah White (ICRAR/Curtin University)

Matt Jarvis, Eleni Kalfountzou, Martin Hardcastle, Aprajita Verma, José Cao Orjales, and Jason Stevens

Government of Western Australia Department of the Premier and Cabinet Office of Science

Radio emission from star formation and accretion

Brightness-weighted number counts

Condon et al. (2012) All radio sources, < z > = 0.8

Does SF dominate the radio emission in RQQs?

Brightness-weighted number counts

ICRAR

Condon et al. (2012) All radio sources, < z > = 0.8 Condon et al. (2013) Optically-selected quasars, 1.8 < z < 2.5

4

Quasar sample from SDSS

ntrinsic optical brightne

ICRAR

The radio/optical definition of 'radio quiet'

Radio loud

This sample Radio quiet

Detections with the JVLA

30/70 RQQs detected at 3σ - White et al. (2017), arXiv:1702.00904

The Far-Infrared to Radio Correlation (FIRC)

ICRAR

Far-Infrared Radio Correlation (FIRC), e.g. Helou et al. (1985)

ICRAR

FIR luminosity from fitting the dust emission

Median temperature = 24.5 K 250 μ m tracing peak emission at z = 1 70-µm band contaminated by AGN emission

The FIRC for objects at z ~ 1

ICRAR

Radio emission from 'radio-quiet' quasars - Sarah White, July 2017

The FIRC for objects at z ~ 1

ICRAR

Radio emission from 'radio-quiet' quasars - Sarah White, July 2017

The accretion-related radio emission

White et al. (2017)

ICRAR

The accretion-related radio emission

White et al. (2017)

ICRAR

ICRAR

Underestimated, due to exceptions to the FIRC?

Accretion vs. star formation

Accretion radio-emission vs. absolute magnitude

Kendall- τ test provides evidence of a correlation

ICRAR

Scatter due to magnetic fields, timescale, or environmental density?

16

Summary

Radio observations – unbiased tracer of both accretion and star formation

FIR data from *Herschel* + radio data from JVLA + FIR-to-radio correlation -> separate radio emission from SF and that from the AGN

(White et al. 2017, arXiv:1702.00904)

Black-hole accretion dominates the faint radio emission of 'radio-quiet' quasars -> History of star formation may be over-estimated, whilst accretion may be under-estimated

Statistical evidence of correlation between accretion-related radio emission and optical luminosity (proxy for accretion rate)

The FIRC's temperature dependence

ICRAR

Radio emission from 'radio-quiet' quasars - Sarah White, July 2017