

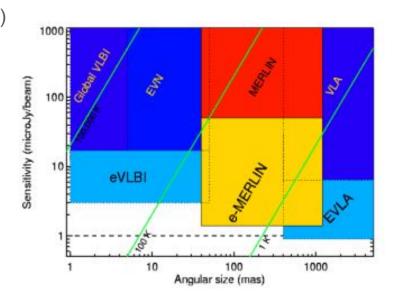
Introduction to e-MERLIN

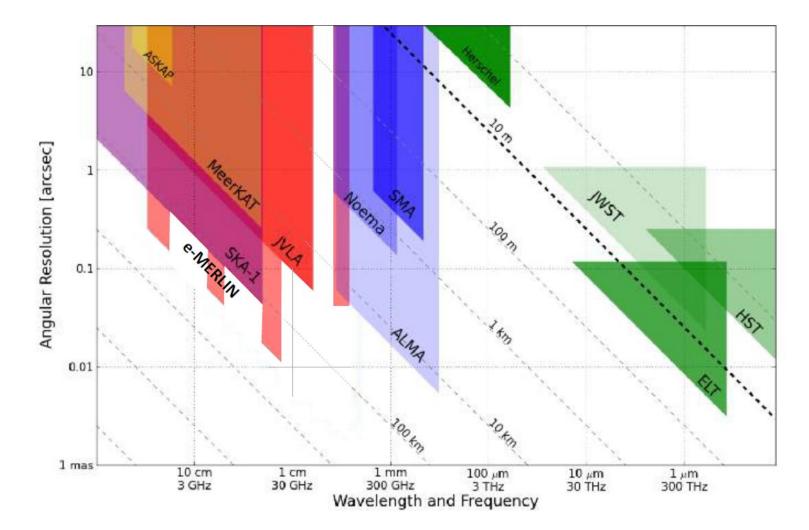
Javier Moldon

This presentation/publication has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet].

e-MERLIN summary

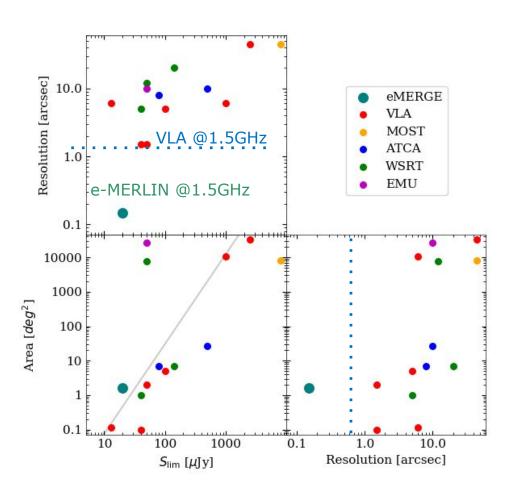
- array of 7 antennas
- operating at cm-λ
- with μJy sensitivity
- ~10-220 km baselines
- elements connected with optical fibre
- SKA-pathfinder




e-MERLIN as part of the EVN

Basic capabilities

- L band (1.4 GHz), C band (5 GHz), K band (22 GHz)
- ~10-20 uJy sensitivity in typical runs
- 150, 40, 10 mas resolution
- Filters scales bigger than 1-5 arcsec
- Mix line and continuum
- Order of mag better than MERLIN performance
- Much improved aperture coverage (frequency)
- Spectral mapping 1.3-1.7; 4.5-7.5 GHz
- Polarization (L, R IQUV)
- Astrometry goal is < 1 mas wrt ICRF



Survey power

Legacy surveys now targeting:

- moderate areas (~deg^2)
- with high resolution (120 mas)

For example: eMERGE, AGATE, SuperCLASS & CoBRAS

Detailed capabilities

	1.5GHz	5GHz	22GHz	Notes	
	(L-band)	(C-band)	(K-band)		
Resolution	150	40	12	Uniform weight at central frequency	
(milliarcseconds)				111	
Field of View (FoV)	30	7	2	FWHM of 25m dishes; reduced when the Lovell Telescope	
(arcmin)				is included	
Frequency range (GHz)	1.25-1.75	4-8	21-24	Tuneable frequency range	
Bandwidth (GHz)	0.5	2	2	Max bandwidth per polarisation; at C or K-band, 4GHz is	
W W /				possible using a single polarisation.	
Sensitivity (µJy/bm) in a	6-7	4	15	Performance depends on usable bandwidth and observing	
full imaging run				conditions. Figures are for e-MERLIN with the Lovell	
Surface brightness	190	~70	~530	telescope at L and C-band.	
sensitivity (K)					
ICRF astrometric	2	~1	~2	With respect to the ICRF (assuming a typical 3° target-	
performance (mas)				calibrator separation)	
Astrometric repeatability	~0.5	~0.2	~1	Day-to-day repeatability using surveyed or in-beam	
(mas)				sources, and assuming a full imaging run	
Amplitude calibration (%)	2	1	10	Targets for day-to-day repeatability	

Legacy and PATT proposals

PATT proposals (aka PI-led proposals of all sizes)

- 6 monthly call cycle (spring/Autumn) fully open
- Proposals accepted via Northstar proposals system
- Online Simulator tools and exposure calculators available from e-MERLIN website

See www.e-merlin.man.ac.uk/observe/

Any use questions : e-merlin@jb.man.ac.uk

Typical oversubscription rates are

- 4-3:1 (all proposals)
- 8-5:1 (proposals requesting Lovell telescope inclusion)

Existing Large Legacy projects

- Account for ~50% of available observing time
- Competitively allocated programme of 12 large projects
- Cover all science areas planets to cosmology
- Long-term observing status allowing large international teams to build resources and sustain projects.

Opportunities for new projects will be available... soon!...

e-MERLIN/VLBI Legacy Science

Pulsars, Gravity & Gravitational waves

Time-domain & Transient astrophysics

Planet & star-formation

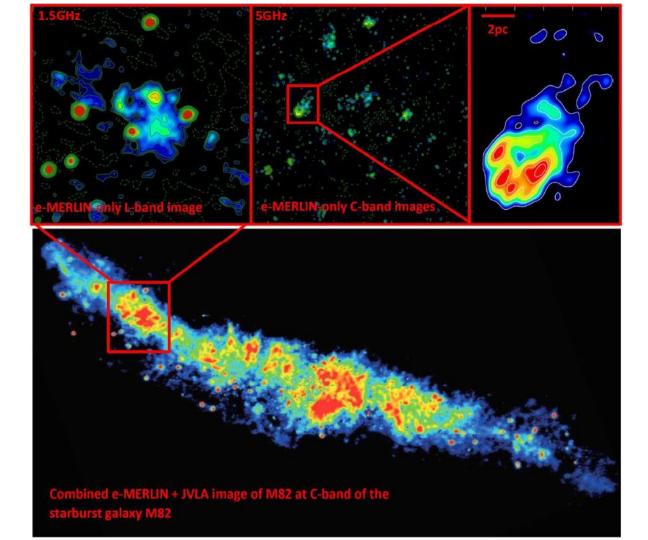
Galaxy formation & evolution

Cosmic shear & Gravitational lensing

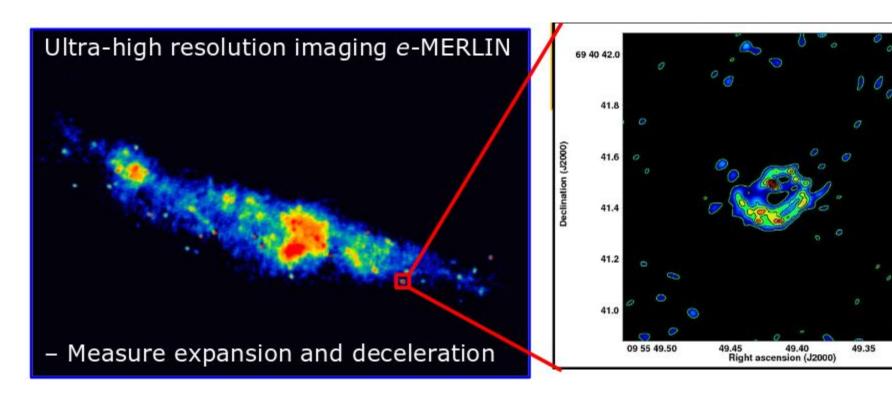
Current e-MERLIN Legacy Programme

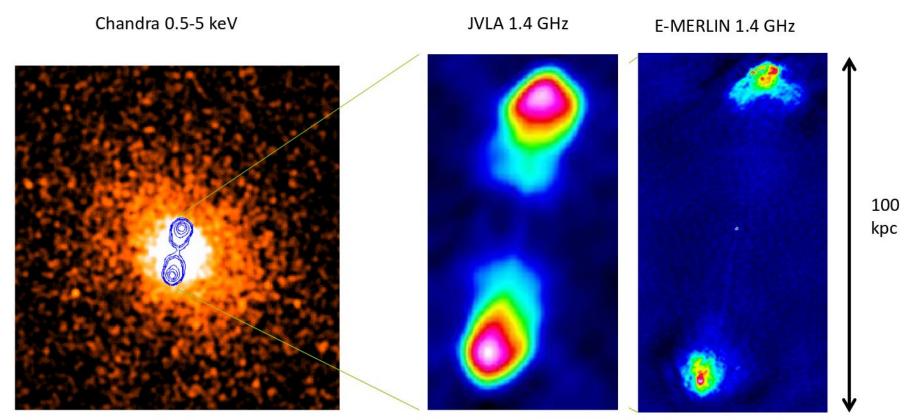
Galactic Science:

-	e∏ - Pulsar astrometry	Vlemmings/Stappers et al.	160hrs
-	PEEBLES – planet formation	Greaves et al.	402hrs
-	Feedback processes in Massive SF	Hoare/Vlemmings et al.	450hrs
-	Thermal jets from low mass stars	Rodriguez et al	180hrs
-	COBRaS – wide-field deep galactic survey	Prinja et al.	294hrs

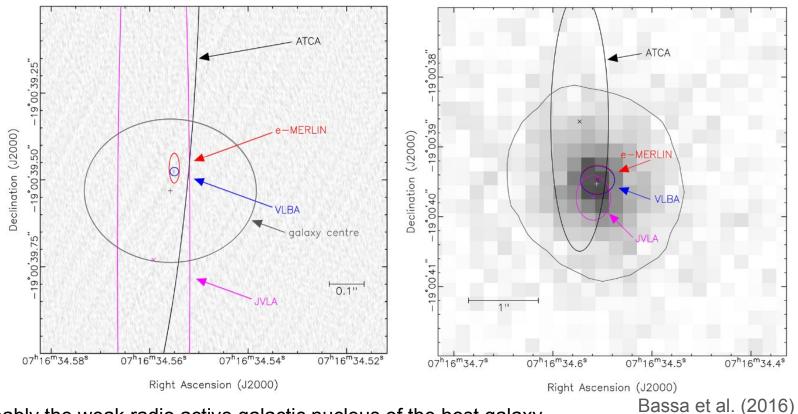

Extragalactic and cosmology:

-	LEMMINGS – 300 nearby gals	Beswick/McHardy et al.	810hrs
-	LIRGI – LIRGs/ULIRGs	Conway/Perez-Torres et al.	353hrs
-	Extragalactic Jets	Laing/Hardcastle et al	375hrs
-	AGATE – cluster fields	Simpson/Smail et al	330hrs
-	e-MERGE – deep field	Muxlow/Smail/McHardy et al	918hrs
-	Gravitational lenses	Jackson/Serjeant et al	228hrs
-	SuperCLASS – 1+deg2 supercluster field	Battye et al	832hrs


Example: M82


M82 with the VLA

Example: M82



Dynamics & Energetics of Radio-loud AGN

Vijay et al. 2018

Astrometry of the galaxy associated with FRB 150418

Probably the weak radio active galactic nucleus of the host galaxy.

Future prospects

- Increase bandwidth to 2 GHz (C-band)
- Include Lovell Telescope at C-band
- Phasing up of array superb PSR/transient instruments ~equivalent to 110m dish.
- EVN recording/transmission for multiple telescopes
- Inclusion of new dishes Goonhilly + other? More resolution, more coverage

Future prospects

- Increase bandwidth to 2 GHz (C-band)
- Include Lovell Telescope at C-band
- Phasing up of array superb PSR/transient instruments ~equivalent to 110m dish.
- EVN recording/transmission for multiple telescopes
- Inclusion of new dishes Goonhilly + other? More resolution, more coverage
- New telescope optics, feeds, receivers, IF, samplers
- New correlator: wide field imaging; simultaneous line & continuum observations
- Digital transmission system: 30 Gb/s from each telescope
- Dedicated optical fibre network
- 100 km installed; 600km leased (total ~700km)
- H-maser freq (1 part in 1014)std over optical fibre network

SKA pathfinder

SKA SDP for e-MERLIN

- New Software investment
- Take development of SKA pipelines via the SDP consortia
- Absorb these into a new e-MERLIN SDP packages.
- Complete 'look, feel' behave like SKA
- Advantage of ability to store data and re-run SDP pipeline 'understand, learn, develop'
- Repeatability available (not for SKA)

Re-call e-MERLIN has many SKA1-Mid similarities:

- Similar frequency coverage 1-22GHz
- Similar baseline ranges 10 -217km (actually a bit more than SKA1-mid)
- But larger D, smaller N.
- Ideal for prototyping SKA1-mid science and SDP processing

