Introduction to offline calibration of ALMA science data

- Obstructions to the signal
- Instrumental calibration
- Using astrophysical standards
 - CASA implementation
- Calibration algorithms

EUROPEAN ARC

ALMA Regional Centre

Focus on recent data

CASA guides
 & Tech
 handbook
 give more
 information

Hazards

- Above the telescope
 - Mostly high frequency
 - Mostly low frequency
 - Everywhere

Galactic CO etc.

Close to AGN: Scintillation

Lobes Faraday rotation

lobe

core

geom

Ionospheric refraction/Faraday rotation Tropospheric refraction/absorption

Troposphere

- Molecular refraction
 - 'Wet' H₂O vapour
 - Clouds worse!

km

- 'Dry' e.g. O₂, O₃
- Refracts radio waves
- Phase distorted
 - $-\Phi_{\rm c} = n_{\rm H2O} \ 2\pi/\lambda$
 - n_{H2O} water vapour refractive index
- Tropospheric errors $\propto 1/\lambda$
 - Significant at high frequencies $v \ge 15$ GHz
 - Sub-mm observing at cold, high, dry sites

Column density as function of altitude

Hazards

- At the telescope and later
 - Mostly high frequency
 - Less relevant now for ALMA

Antenna positions

Pointing, Focus Efficiency (surface)

Timing and frequency information issues (station clock, local oscillator...)

Insufficient corrections for delay tracking (ALMA Cycle 0, VLBI, e-MERLIN)

aeom

Bandpass response

Off-line calibration

- Correlated data: series of complex visibilities
 - Metadata:
 - Descriptive: antenna table, source names etc.
 - Flagging: antenna not on source etc.
 - Calibration: Tsys measurements etc.
- ALMA Science Data Model
 - XML structure to hold binary data + metadata
 - Very compact, good for transport
 - Convert to Measurement Set for easy access/ modification in processing
 - Huge data? Look up mms (multi-ms) for parallelisation

Visibility data: Measurement Set format

DATA FT of image (Edits are stored her made from MS made from MS Copy of stored her stored her made from MS	IAIN	Flags	Corrected data	lags
Original visibilitiesFT of supplied model imageInst, back calibration 	ATA riginal sibilities	<i>with</i> (Edits are stored here first; backup tables can be made and used to modify)	Copy of visibilities with calibration tables applied (Used in imaging not	Edits are tored here rst; backup ables can be hade and sed to hodify)

- Instrumental calibration in tables inside MS
- Calibration derived during data reduction stored in external tables (similar format)
- Apply calibration to Data table to write Corrected
 - Corrected and Model can be re-initialised if you mess up!

Measurement Set visibility data

- Directory of Tables
 - MAIN Data
 - Binary visibilities
 - Observational properties
 - Metadata
- Similar format for images
- Easy to access
- http://casa.nrao.edu/ Memos/229.html

J - I-		_
jupiterallcal.split.	ms	
I ANTENNA		
table₊dat		
table.f0		
table₊info	I OBSERVATION	
` table.lock	table.dat	I SPECTRAL MINDOM
I DATA_DESCRIPTIO	table.f0	I I table.dat
table.dat	table.info	l l table.f0
table.f0	` table.lock	l l table.f0i
table₊info	I POINTING	l l table info
` table.lock	table.dat	I ` table.lock
I FEED	table.f0	I STATE
table.dat	table,f0i	l l table.dat
table.f0	table,f1	l l table.f0
table₊f0i	table₊info	table.info
table₊info	` table.lock	l ` table.lock
∣ ` table.lock	I POLARIZATION	l table.dat
I FIELD	table.dat	l table.f0
table₊dat	table ₊ f0	l table.f1
table₊f0	table,f0i	l table.f2
table.f0i	table,info	l table.f2 TSM1
table₊info	` table,lock	l table.f3
∣ ` table,lock	I PROCESSOR	I table.f3 TSM1
I FLAG_CMD	table.dat	l table.f4
table.dat	table.f0	l table.f5
table.f0	table.info	l table.f6
table₊info	l ` table.lock	I table.f6 TSM0
` table₊lock	I SOURCE	l table.f7
I HISTORY	table.dat	I table.f7 TSM1
table₊dat	table.f0	I table.f8
table₊f0	table₊f0i	I table_f8_TSM1
table₊info	table₊info	l table,info
∣ ` table.lock	` table.lock	` table.lock

> tree iupiterallcal.split.ms

Measurement Set MAIN table

•	▼ □ Table Browser □ L □ ×							$\exists \times$				
<u>F</u> ile	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools E <u>x</u> port <u>H</u> elp											
3C277.1C.ms												
data		UVW 🗸	FLAG	WEIGHT	ANTENNA1	ANTENNA2	EXPOSURE	FIELD_ID	Т	IME	DATA	
ble (53	[-131860, -138051, 85180.9]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:22.00	[4, 1] Complex	
đ	68	[-131776, -138090, 85247.1]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:39.00	[4, 1] Complex	
ds	83	[-131692, -138129, 85313.3]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-1-14-38.00	[4.1] Complex	
wor	98	[-131609, -138168, 85379.5]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	3C277.1C.ms[53, 21] =		
key	113	[-131525, -138207, 85445.6]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1 Complex Array of siz			41].
able	128	[-131441, -138246, 85511.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1		0	
<u> </u>	143	[-131357, -138285, 85577.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0 (-0.16)	1370 - 2 6 3 6 1	3)
rds	158	[.131273 .138323 856/37]	[/ 1	[52 5	1	5	7 99	0	1005-04-1	0 (-0.104	+379,-2.0301	5)
jowo!	Restore Columns Resize Headers 1 (0.446854,0.111045)							5)				
PAGE NAVIGATION First << [1/211] >> Last 1 Go 2 (-0.0716612,0.223381)						81)						
	3 (-2.49088,-0.869153)						3)					

- Some of the columns per visibility
 - Data: Complex value for each of 4 correlations (RR RL LR LL) per spectral channel
 - Inspect in CASA browsetable or write to file

Atmospheric absorption, emission effect on amplitudes

 The atmosphere absorbs the astrophysical signal, and adds noise

 $T_{received} = T_{source} e^{\tau_{atm}/\cos z} + T_{atm} (1 - e^{\tau_{atm}/\cos z})$

where the source would provide temperature T if measured above the atmosphere and z is the zenith distance

- Same source, same baselines
 - Raw amps lower at higher Preciptable Water Vapour

System temperature measurement

- Compare response to warm load and ambient cabin T $T_{sys} = \frac{1}{\eta_A e^{-\tau_{atm}}} [T_{Rx} + \eta_A T_{sky} + (1 - \eta_A) T_{amb}] \text{ (single or 2-sideband case)}$
 - Solve for $T_{\rm sys}$
- Provides *relative* scaling of amplitudes (gainelevation, bright sources, weather...)
- Can use to provide a scaling from correlator units
 - System Equivalent Flux Density SEFD (Jy) = T_{sys}/K
 - where $K = \eta_A A_{\text{eff}}/2 k_B$ (Kelvin per Jy)

– Antenna area $A_{\rm eff}$, efficiency η_A

ALMA Amplitude Calibration Device (ACD)

Calibration

Device

One load at temperature of receiver cabin (~293 K) Other load at 353 K Swing into beam every few minutes

Receiver cabin

ALMA

antenna

Calibration

Solar Filter

Loads &

Robotic Arm,

Refractive phase error

- Electro-magnetic wave propagates distance dthrough medium with refractive index n $(n_{\rm H2O}-1) \propto {\rm PWV} / d T_{\rm atm}$
 - where PWV=precipitable water vapour column at atmospheric temperature $T_{\rm atm}$
 - Refractive index mostly constant >100 GHz
- Total phase error $\Phi_{\rm e} \propto (2\pi/\lambda) (n_{\rm H2O}-1)d$

 \propto (2 π/λ) PWV/ $T_{\rm atm}$

• Average, *total* PWV and dry component effect on delay and pointing corrected on-line for ALMA

– 1 mm PWV ~ 0.7 mm extra path ~ 0.0023 ns delay

- Snell's Law: $sin(i_{nH20})/sin(i_{nvacuum}) = n_{H20} / n_{vacuum}$ Refraction angle $\delta \theta \sim \delta n \tan(i) < \arctan$ for ALMA
 - Bulk delay corrected on-line

- Antennas 1, 2, 3 see slightly different disturbances
- Sky above antenna 4 very different, varies independently
 Residual phase fluctuations calibrated off-line

Kolmogorov turbulence

- Baselines 4-* in outer scale regime: ϕ_{rms} levels off

 $\phi_{rms} = \frac{K}{\lambda} B^{\alpha}$ where $K \sim 100$ at ALMA for λ in mm and α depends on the length of baseline B compared with W, the thickness of the turbulent layer

Kolmogorov

(Coulman'90)

prediction

Refraction variations \Rightarrow phase errors \Rightarrow amplitude loss, position jitter

- Averaging fluctuating phase decorrelates amplitudes
 - Visibility $V = V_0 e^{i\phi}$ $\langle V \rangle = V_o \langle e^{i\phi} \rangle = V_o e^{-(\phi_{rms}^2)/2}$

 ϕ_{rms} in radians Lose ~2% amplitude for 10° $\phi_{rm\underline{\$}}$

- In addition to absorption loss
- Fluctuations on time-scales
 ~1 sec: raw data position jitter
- Water Vapour Radiometry
 - Measure sky emission around
 - 183-GHz water line for each antenna, every ~second
 - Calculate PWV column and hence phase delay

– Derive corrections $\Phi_{\rm e} \propto$ (2 π/λ) PWV

PWV ~0.6, Band 9 raw 0.25 - 2.5 km baselines

Time

Calibration using astrophysical sources

- A typical observation includes at least the following:
 - Science target source(s)
 - Phase reference calibrator close on sky to target
 - Bright enough to give good S/N in each scan
 - Bandpass calibration source
 - Strong enough to be seen in a single channel
 - Flux scale calibrator of known flux density
- A calibrator: may be used in more than one role
 - Needs accurate position, compact structure (or good model).
- Calibration software compares the visibilities for a source with a model and calculates corrections to bring the observed visibilities closer to the model

Phase referencing

- Observe phase-ref source close to target
 - Point-like or with a good model
 - Close enough to see same atmosphere
 - ~2-15 degrees (isoplanatic patch)
 - Bright enough to get good SNR much quicker than atmospheric timescale τ
 - τ 10 min/30 s short/long *B* & low/high v
 - Nod on suitable timescale e.g. 5:0.5 min
 - Derive time-dependent corrections to make phase-ref data match model
 - Apply same corrections to target
 - Correct amplitudes similarly
- Self-calibration works on similar principle

Source structure in uv plane

Baseline length in wavelengths (uv distance)

Phase referencing

- Phase reference has accurate position; should have flat amplitudes and 0° phases; use this as model
- Calculate corrections to make actual phase-ref phases match model
- Apply these to phase-ref and target

Phase errors in 3D

Calibration strategy

- Need Signal to Noise Ratio $\sigma_{ant}/S_{calsource}$ > 3
 - per calibration interval per antenna

$$\sigma_{ant}(\delta t, \delta v) \approx \sigma_{array} \sqrt{\frac{N(N-1)/2}{N-3}}$$

- σ_{array} is noise in all-baseline data per time-averaging interval per frequency interval used for calibration
- Have to average in time and/or frequency
 - Bandpass first or time-dependent cal. first? – Do not average over interval where phase change $d\phi > \pi/4$
 - Keep polarizations separate if possible in early calibration
- Usually start with bandpass calibrator
 - First, time-dependent $\boldsymbol{\phi}$ calibration
 - allow averaging up in time to get enough S/N per channel

Calibration with astrophysical sources

- Bandpass calibrator bright as possible
 - Derive time-dependent phase (optional amp) calibration (G1) with solint int (if necessary select good channel range)
 - Apply calibration (G1), average all times for freq. dependent phase & amplitude calibration, i.e. bandpass calibration (B1).
 - Average narrow channels to \sim 5 20 MHz
 - G1 is not used any more
- Phase-reference fairly bright source
 - **3.** Apply B1 and derive time-dependent phase calibration (G2) average all channels, shortest *dt* for enough SNR (default int)
 - 4. Apply B1, G2, derive time-dependent amp. cal. per scan (G3)
 - 5. Apply B1 and derive time-dependent phase cal. per scan (G4) to maximise S/N and 'relevance' to target

Phase & amp: effects on imaging

0.3 0.25 Ū, Phase-only calibration 50' 43°54'00' 10" 20" 30" -43°54'00' 40" 10^h27^m54^s 52^s 51^s 50^s J2000 Right Ascension

0.35

plus phase-only solutions: source seen, snr 15

No phase-reference calibration

Tsys, WVR, Bandpass cal only: no source seen

Flux scale calibration

- QSO are mostly used for BP and time-dependent phase and amplitude calibration: sub-arcsec, bright sources
 - Small source, shorter light-travel diameter Variable!
 - Monitor flux standards with respect to known source
- Flux-stable sources are mostly large, resolved
 - ALMA now mostly uses well-modelled smaller planets
 e.g. Neptune as primary reference for 'grid' QSOs.
- Calibrate time-varying gains, bandpass
 - Derive scaling factor from correlator units to Jy and apply to all sources (usually by scaling amp cal table G3)

'Int' phase solutions point source

Amp solutions for point source

Simple calibration in practice

- Generally trust pipeline/observatory calibration
 - Check sample images/calibration plots/weblog (tomorrow)
 - If problems:
 - Good diagnostics: Flux scale, corrected BP cal bandpass
 - Check phase-ref solutions (next slides)
 - CASA divides complex solutions into data
 - High amp solution means actual data has low power
 If applied to data, noise will be increased
- If you need to re-do calibration, or for self-cal:
 - Check actual data to estimate solints
 - Examine data for antennas with many failed/anomalous solutions
 - Check raw/earlier data in case previous calibration bad

Libraries use Measurement Equation

 $\underline{V}_{ij} = \mathbf{M}_{ij}\mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{F}_{i$

Vectors		Jones Matrices Hazards				
V isibility = $f(u,v)$	Starting point	Multiplicative baseline				
I mage	Goal	error				
		Bandpass response				
<u>A</u> dditive baseline	error	Generalised electronic				
Scalars	Methods	gain				
S (mapping \underline{I} to o	bserver	Dterm (pol. leakage)				
polarization)		E (antenna voltage				
<i>x,y</i> image plane co	ords	pattern)				
<i>u</i> , <i>v</i> Fourier plane	coords	Parallactic angle Tropospheric effects				
i,j telescope pair						
		Faraday rotation				

Using the Measurement Equation

- Hamaker, Bregman & Sault 1996
 - Decompose into relevant calibration components e.g.
- $\underline{V}_{ij}^{obs} = \mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{T}_{ij}\underline{V}_{ij}^{ideal}$
 - Chose one (or a few) at a time
 - Usually solve fastest-varying first

(so averaging over slower-varying)

- Compare data with model or idealisation
 - Linearise and solve by χ^2 (or other) minimization
- I ignor online calibration (e.g. bulk delay), and polarization-related effects
 - XX and YY can have slightly different amplitudes which change with time, but total intensity is not affected

The method behind solving the ME

- Express the correlator output as the coherency matrix of the signals from each pair of antennas *ij*.
 - Using a circular polarization basis, form outer product: $\mathbf{E}_{ij} = \mathbf{e}_{i} \mathbf{e}_{j}^{\dagger} = \begin{pmatrix} R_{i} \\ L_{i} \end{pmatrix} \begin{pmatrix} R_{j}^{*} & L_{j}^{*} \end{pmatrix} = \begin{pmatrix} R_{i} R_{j}^{*} & R_{i} L_{j}^{*} \\ L_{i} R_{j}^{*} & L_{i} L_{j}^{*} \end{pmatrix}$
 - Equivalent to $\mathbf{V}(u, v)_{ij} = \begin{pmatrix} RR & RL \\ LR & LL \end{pmatrix}$
- Replace signal **e** from each antenna with corrupted signal $\mathbf{e}'_i = \mathbf{J}_i \, \mathbf{e}_i$
 - J_i is a (2 x 2) Jones matrix for antenna-based terms e.g., for the complex 'gain' errors affecting amplitude and phase: $(a_p, 0)$

$$\mathbf{J}_{\mathrm{G}} = \begin{pmatrix} g_{R} & 0 \\ 0 & g_{L} \end{pmatrix}$$

The method behind solving the ME

- The corruption of the 'true' visibilities E_{ij} is written as

 $\mathbf{E}'_{ij} = \mathbf{e}'_{i} \mathbf{e}'_{j}^{\dagger} = \mathbf{J}_{i} \mathbf{E}_{ij} \mathbf{J}_{j}^{\dagger}$

– Jones matrices known so expression can be inverted:

$$\mathbf{E}_{ij} = \mathbf{J}_{i}^{-1} \mathbf{E}'_{ij} \mathbf{J}_{j}^{\dagger - 1}$$

 If polarization is ignored and errors are constant across the (small) field of view, this can be linearised

$$V_{ij}^{obs} - J_i J_j^* V_{ij}^{mod}$$

- V^{mod} are visibilities corrected for the errors represented by this Jones matrix, solved by to find corrections J_i , J_j to apply per antenna by minimising

$$\chi^{2} = \sum |V_{ij}^{obs} - J_{i}J_{j}^{*}V_{ij}^{mod}|^{2}W_{ij}$$

– Weights (if any) $W_{ij} = s_{ij}^{-2}$ are derived from previous noise estimates e.g. sample size, scatter in previous solutions