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Further Reading

The slides from this talk are based on the fundamentals of interferometry which are 
explained in detail across:

• “Interferometry and Synthesis in Radio Astronomy” - Thompson, Moran & Swenson 

• “Synthesis Imaging in Radio Astronomy II” – NRAO

• “An introduction to Radio Astronomy” – Burke and Graham-Smith (4th edition out soon Burke, 
Graham-Smith (& Wilkinson?))

• “Tools of Radio Astronomy” – Wilson, Rohfls & Hüttemeister

• “The CASA Cookbook” – Ott & Kern et al.



Outline

• What we measure

• Imaging the data

• The CLEANing process

An advanced warning, for a talk about imaging it is rather wordy to begin with.



What we measure
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We want to fill the uv-plane because the uv-coverage is the FT of the synthesised beam, B. The greater the uv-
coverage the better behaved the sidelobes are.

6 dishes
(~15 mins)

42 dishes
(~15 mins)

Filling the uv-plane



Sampling function
Let us call the sampling of the uv-plane (aka uv-coverage), S, the sampling function

Given this the synthesized beam, B, is  B=FT(S	).

And for each uv-point we have an observed visibility, V(u,v), so we can define the sampled visibility function as:

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”
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So V	s=SV		and from earlier (eq. 3) I	D=	FT(V	S	)	=	FT	(SV	). From which it follows that I	D is the measured sky brightness
convolved with the synthesis beam, B.



Weighting

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

Given this we can introduce weighting functions to control the shape of the synthesised beam.

Rk= Weights relating to data quality, i.e. down weight bad data. This is observation dependent and we 
have no post observation control over it (so ignore).

Tk= Tapering function. Apply a tapering function (i.e. Gaussian), to the uv-coverage to for example 
downweight the outer uv-points lowering resolution. 

Dk= Density weighting... Next slide.

And as per the previous slide we can define the weighted and sampled visibility function as V	W=WV.
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Density weighting description

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

Due to the nature of how arrays are typically built the uv-coverage density is typically higher toward the uv origin.

Two “extremes” of density weighting are typically used:

Natural weighting: Dk= 1. All visibilities are treated the same. 
- This gives the highest signal to noise possible within the final image
- The poorest angular resolution and higher sidelobe effects.

Uniform weighting: Dk= 1/Ns(k). Weight visibilities by the number of data points in a symmetric region, s. 
- Downweights data in dense regions.
- Higher resolution, lower sidelobes, but worse SNR.

There are then super and sub-uniform (see e.g. CASA cookbook), and...

Briggs weighting: A ‘sliding scale’ between Natural and Uniform controlled by the ‘robust’ parameter. With (in CASA) +2 = 
nearly Natural and -2 = nearly Uniform. 

We’ll come back to these later as we define these during CLEAN.



Imaging the data

We now have the sampled and weighted visibilities, V	W.

In order to efficiently make an image of our target sky brightness distribution, 
I, we need to take the Fourier transform of this using Fast Fourier Transforms 
(FFTs).

This requires the V	W data to be gridded on to a regular grid.

This is done by convolution with some suitable gridding function*. Leaving us 
ultimately with some weighted and gridded visibilities which can be FFT’d to 
give us our dirty image ID.

*Discussion of gridding algorithms is a little beyond the scope of this workshop, please check the references
at the start of this talk for more information.



CLEAN-ing
We’ve seen that our dirty image ID is the sky brightness distribution 
convolved with the synthesised beam B.

To get a better representation of the sky brightness distribution we need 
to remove the artefacts introduced by B. To achieve this we use CLEAN*

*As far as I know CLEAN is not an acronym, but it is usually captialised. I don’t know why?! 



Simple CLEAN overview
The Högbom (1974) CLEANing algorithm is the simplest CLEAN algorithm and is very illustrative of how CLEAN works
in general.

In words the Högbom algorithm works as follows:

1) Find the magnitude and position of peak emission in the dirty image.
2) Subtract from the dirty image the dirty beam, B, scaled by some gain value (i.e. 0.1). Creating a ‘residual’ image.
3) Note the position and magnitude subtracted as a point in a model.
4) Repeat 1-3 until a user defined threshold is reached, either some noise limit (in the residual) or a given number of 

iterations.
5) Convolve the final model with an idealised beam. I.e. a beam based on the interferometer if it was a huge single dish.

Or in a 2D example on the next page



Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Ite
ra

tio
n 

1

Residual Image after subtracting DB from peak in DI CLEAN components in Model Image



Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)
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Residual Image after subtracting several DBs from located 
peaks in DI

CLEAN components in Model Image



Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)
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Residual Image after subtracting enough DBs from 
located peaks in DI until threshold met.

CLEAN components in Model Image after final CLEAN 
loop



Högbom 2D example

CLEAN components in Model Image after final 
CLEAN loop

Idealized beam

Final reconstructed image



... and in 3D

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

à Increasing CLEAN cycles à



... and in 3D

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)



Other CLEAN algorithm

• Clarke/Cotton-Schwab/ClarkeStokes: Improvements and refinements 
on Högbom. In general these are preferred to Högbom. They rely on 
major and minor CLEAN cycles. (Next slide).

• Multiscale: Searches for clean components based on user defined size 
scales. Better for cleaning extended, diffuse, none point-like sources.

• These are only a couple



Major and Minor CLEAN cycles

• For the more ‘advanced’ CLEAN algorithms (and infact CASA’s version of Högbom). 
CLEAN runs what are termed Major and Minor cycles.

• During a Major Cycle the current model is used to generate model 
visibilities. Subtract these from the data generate residual visibilities. 
Convert the residual visibilities into a residual image. (In the visibility 
domain).

• During a Minor Cycle peak flux components are found and the model 
and residual image are updated. (All in the image domain).



Useful image from: https://casa.nrao.edu/casadocs/casa-5.3.0/synthesis-imaging/imaging-overview



Setting up CLEAN in CASA
In CASA the task to use for CLEANing is ‘tclean’, which is the current 
state of the art CLEAN.

It is a refactored replacement to the task ‘clean’ .

There are a *LOT* of parameters in this task. 

At the beginner level the most important to define are:

1. The measurement set to use
2. The field you want to image
3. Which SPW to use
4. The size of the image you want to make (next slide)
5. The pixel (cell) size you want in your image (next slide)
6. The image weighting
7. The cleaning threshold value



Rules of thumb:

• Cell size = At least 3 pixels across the synthesised beam. Defined in arcsec.
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of size=cell.
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The CASA viewer

• During the tutorials we have see 
the CASA viewer.

• Beyond simply allowing us to 
view images it can be used to 
preform image analysis.

• Can be started within CASA with 
the call viewer() or outside of 
CASA with casaviewer on the 
command line.



IMPORTANT INFORMATION:

In the future (potentially as early as December/January), a new “Viewer” known as CARTA will be released.

The bad news: Early versions of CARTA may not have all the functionality of Viewer. 
(But the Viewer is going to stick around for a while!)

The good news: The early beta version of CARTA 1.0 we’ve seen are a significant improvement on Viewer in 
terms of speed, reliability and aesthetic. 



CASA Tasks and Tools for image analysis

TASKS: 
Front end, user friend command line 
functions for data reduction, 
manipulation in CASA.  

Built upon the TOOL kit functions 
available in CASA.

Sometimes have a bit more 
functionality than functions available 
in GUIs e.g. viewer

TOOLS: 
‘Under the hood’ basic functions upon 
which tasks are built.

Preform simple tasks but can be useful 
in image manipulation.

Currently not the best documentation.

VS



A non-exhaustive list of useful image analysis 
tasks available in CASA

immoments()
Compute moments from an 

image

specfit ()
Fit 1-dimensional gaussians 

and/or polynomial models to 
an image or image region

impv ()
Construct a position-velocity 

image by choosing two 
points in the direction plane

imhead()
List, get and put image 

header parameters

imfit()
Fit one or more elliptical 

Gaussian components on an 
image region

immath()
Perform mathematic 
operations on images

imsubimage()
Create a (sub)image from a 

region of the image

imstat()
Displays statistical 

information from an image 
or image region

imval()
Get the data value(s) and/or 

mask value in an image



Using the imaging toolkit functions

• The Imaging toolkit is more object 
oriented and Pythonic than using 
CASA tasks

• You will need to use multiple tools 
to achieve a single functions as you 
have to open and close the target 
image before doing anything to it.

• An example of a simple sequence 
of calls is given on the right.

CASA <2>: ia.open(‘myImage.image’)
Out[2]: True

CASA <3>: ia.maxfit() #-- Find and fit max pixel in image
Out[3]:
{'component0': {'flux': {'error': array([ 0., 0., 0., 0.]),

'polarisation': 'Stokes',
'unit': 'Jy',
... }}

CASA <4>: ia.close()
Out[4]: True

CASA <5>: ia.done()
Out[5]: True



A non-exhaustive list of useful image analysis 
toolkit functions available in CASA

ia.open()
Open a new image file with 

this image tool

ia.getchunk ()
Get the pixel values from a 
regular region of the image 

into an array

ia.maxfit ()
Find maximum and do 
parabolic fit in the sky

ia.close()
Close the image tool

ia.coordsys()
Get the Coordinate System 

of the image

ia.newimagefromarray()
Construct a casa image from 

an array

ia.done()
Destroy this image tool

ia.convolve2D()
Convolve image by a 2D 

kernel

ia.findsources()
Find point sources in the sky


