
Introduction to Imaging:
General Principles

Adam Avison

Introduction to Imaging:
General Principles

Adam Avison

Further Reading

The slides from this talk are based on the fundamentals of interferometry which are
explained in detail across:

• “Interferometry and Synthesis in Radio Astronomy” - Thompson, Moran & Swenson

• “Synthesis Imaging in Radio Astronomy II” – NRAO

• “An introduction to Radio Astronomy” – Burke and Graham-Smith (4th edition out soon Burke,
Graham-Smith (& Wilkinson?))

• “Tools of Radio Astronomy” – Wilson, Rohfls & Hüttemeister

• “The CASA Cookbook” – Ott & Kern et al.

Outline

• What we measure

• Imaging the data

• The CLEANing process

An advanced warning, for a talk about imaging it is rather wordy to begin with.

What we measure

V (u,v) = A(l,m)I(l,m) e∫
−i2π (ul+vm) dldm

1− l2 −m2

Rx,y = A0 V Δν cos(2πνbλ ⋅ s0 −φV)Correlator output

Visibility equation

!" #,% = '
()

)

* +, , - +, , ./01 23456 7+7,Dirty image

Eq. 1

Eq. 2

Eq. 3

We want to fill the uv-plane because the uv-coverage is the FT of the synthesised beam, B. The greater the uv-
coverage the better behaved the sidelobes are.

6 dishes
(~15 mins)

42 dishes
(~15 mins)

Filling the uv-plane

Sampling function
Let us call the sampling of the uv-plane (aka uv-coverage), S, the sampling function

Given this the synthesized beam, B, is B=FT(S).

And for each uv-point we have an observed visibility, V(u,v), so we can define the sampled visibility function as:

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

-. /, 0 ≡ 2
345

6
7 / − /3, 0 − 03 -(/3, 03)

9 /, 0 = 2
345

6
7 / − /3, 0 − 03

So V	s=SV		and from earlier (eq. 3) I	D=	FT(V	S)	=	FT	(SV). From which it follows that I	D is the measured sky brightness
convolved with the synthesis beam, B.

Weighting

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

Given this we can introduce weighting functions to control the shape of the synthesised beam.

Rk= Weights relating to data quality, i.e. down weight bad data. This is observation dependent and we
have no post observation control over it (so ignore).

Tk= Tapering function. Apply a tapering function (i.e. Gaussian), to the uv-coverage to for example
downweight the outer uv-points lowering resolution.

Dk= Density weighting... Next slide.

And as per the previous slide we can define the weighted and sampled visibility function as V	W=WV.

* +, - = .
/01

2
3/4/5/6 + − +/, - − -/

Density weighting description

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

Due to the nature of how arrays are typically built the uv-coverage density is typically higher toward the uv origin.

Two “extremes” of density weighting are typically used:

Natural weighting: Dk= 1. All visibilities are treated the same.
- This gives the highest signal to noise possible within the final image
- The poorest angular resolution and higher sidelobe effects.

Uniform weighting: Dk= 1/Ns(k). Weight visibilities by the number of data points in a symmetric region, s.
- Downweights data in dense regions.
- Higher resolution, lower sidelobes, but worse SNR.

There are then super and sub-uniform (see e.g. CASA cookbook), and...

Briggs weighting: A ‘sliding scale’ between Natural and Uniform controlled by the ‘robust’ parameter. With (in CASA) +2 =
nearly Natural and -2 = nearly Uniform.

We’ll come back to these later as we define these during CLEAN.

Imaging the data

We now have the sampled and weighted visibilities, V	W.

In order to efficiently make an image of our target sky brightness distribution,
I, we need to take the Fourier transform of this using Fast Fourier Transforms
(FFTs).

This requires the V	W data to be gridded on to a regular grid.

This is done by convolution with some suitable gridding function*. Leaving us
ultimately with some weighted and gridded visibilities which can be FFT’d to
give us our dirty image ID.

*Discussion of gridding algorithms is a little beyond the scope of this workshop, please check the references
at the start of this talk for more information.

CLEAN-ing
We’ve seen that our dirty image ID is the sky brightness distribution
convolved with the synthesised beam B.

To get a better representation of the sky brightness distribution we need
to remove the artefacts introduced by B. To achieve this we use CLEAN*

*As far as I know CLEAN is not an acronym, but it is usually captialised. I don’t know why?!

Simple CLEAN overview
The Högbom (1974) CLEANing algorithm is the simplest CLEAN algorithm and is very illustrative of how CLEAN works
in general.

In words the Högbom algorithm works as follows:

1) Find the magnitude and position of peak emission in the dirty image.
2) Subtract from the dirty image the dirty beam, B, scaled by some gain value (i.e. 0.1). Creating a ‘residual’ image.
3) Note the position and magnitude subtracted as a point in a model.
4) Repeat 1-3 until a user defined threshold is reached, either some noise limit (in the residual) or a given number of

iterations.
5) Convolve the final model with an idealised beam. I.e. a beam based on the interferometer if it was a huge single dish.

Or in a 2D example on the next page

Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Ite
ra

tio
n

1

Residual Image after subtracting DB from peak in DI CLEAN components in Model Image

Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Ite
ra

tio
n
n

Residual Image after subtracting several DBs from located
peaks in DI

CLEAN components in Model Image

Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Ite
ra

tio
n
FI
N
AL

Residual Image after subtracting enough DBs from
located peaks in DI until threshold met.

CLEAN components in Model Image after final CLEAN
loop

Högbom 2D example

CLEAN components in Model Image after final
CLEAN loop

Idealized beam

Final reconstructed image

... and in 3D

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

à Increasing CLEAN cycles à

... and in 3D

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Other CLEAN algorithm

• Clarke/Cotton-Schwab/ClarkeStokes: Improvements and refinements
on Högbom. In general these are preferred to Högbom. They rely on
major and minor CLEAN cycles. (Next slide).

• Multiscale: Searches for clean components based on user defined size
scales. Better for cleaning extended, diffuse, none point-like sources.

• These are only a couple

Major and Minor CLEAN cycles

• For the more ‘advanced’ CLEAN algorithms (and infact CASA’s version of Högbom).
CLEAN runs what are termed Major and Minor cycles.

• During a Major Cycle the current model is used to generate model
visibilities. Subtract these from the data generate residual visibilities.
Convert the residual visibilities into a residual image. (In the visibility
domain).

• During a Minor Cycle peak flux components are found and the model
and residual image are updated. (All in the image domain).

Useful image from: https://casa.nrao.edu/casadocs/casa-5.3.0/synthesis-imaging/imaging-overview

Setting up CLEAN in CASA
In CASA the task to use for CLEANing is ‘tclean’, which is the current
state of the art CLEAN.

It is a refactored replacement to the task ‘clean’ .

There are a *LOT* of parameters in this task.

At the beginner level the most important to define are:

1. The measurement set to use
2. The field you want to image
3. Which SPW to use
4. The size of the image you want to make (next slide)
5. The pixel (cell) size you want in your image (next slide)
6. The image weighting
7. The cleaning threshold value

Rules of thumb:

• Cell size = At least 3 pixels across the synthesised beam. Defined in arcsec.

!"##~ %
&'()

× +
, (where n ~ 3-6)

• Image size = Cover at least the primary beam/field of view. Defined in pixels
of size=cell.

-./-0"~ %
1 ×

+
2344 (where D is the dish diameter)

• Your threshold should be roughly:

5ℎ7"/ℎ8#9~ 2;</=/
>"√(A A − 1 ∆E∆5)

The CASA viewer

• During the tutorials we have see
the CASA viewer.

• Beyond simply allowing us to
view images it can be used to
preform image analysis.

• Can be started within CASA with
the call viewer() or outside of
CASA with casaviewer on the
command line.

IMPORTANT INFORMATION:

In the future (potentially as early as December/January), a new “Viewer” known as CARTA will be released.

The bad news: Early versions of CARTA may not have all the functionality of Viewer.
(But the Viewer is going to stick around for a while!)

The good news: The early beta version of CARTA 1.0 we’ve seen are a significant improvement on Viewer in
terms of speed, reliability and aesthetic.

CASA Tasks and Tools for image analysis

TASKS:
Front end, user friend command line
functions for data reduction,
manipulation in CASA.

Built upon the TOOL kit functions
available in CASA.

Sometimes have a bit more
functionality than functions available
in GUIs e.g. viewer

TOOLS:
‘Under the hood’ basic functions upon
which tasks are built.

Preform simple tasks but can be useful
in image manipulation.

Currently not the best documentation.

VS

A non-exhaustive list of useful image analysis
tasks available in CASA

immoments()
Compute moments from an

image

specfit ()
Fit 1-dimensional gaussians

and/or polynomial models to
an image or image region

impv ()
Construct a position-velocity

image by choosing two
points in the direction plane

imhead()
List, get and put image

header parameters

imfit()
Fit one or more elliptical

Gaussian components on an
image region

immath()
Perform mathematic
operations on images

imsubimage()
Create a (sub)image from a

region of the image

imstat()
Displays statistical

information from an image
or image region

imval()
Get the data value(s) and/or

mask value in an image

Using the imaging toolkit functions

• The Imaging toolkit is more object
oriented and Pythonic than using
CASA tasks

• You will need to use multiple tools
to achieve a single functions as you
have to open and close the target
image before doing anything to it.

• An example of a simple sequence
of calls is given on the right.

CASA <2>: ia.open(‘myImage.image’)
Out[2]: True

CASA <3>: ia.maxfit() #-- Find and fit max pixel in image
Out[3]:
{'component0': {'flux': {'error': array([0., 0., 0., 0.]),

'polarisation': 'Stokes',
'unit': 'Jy',
... }}

CASA <4>: ia.close()
Out[4]: True

CASA <5>: ia.done()
Out[5]: True

A non-exhaustive list of useful image analysis
toolkit functions available in CASA

ia.open()
Open a new image file with

this image tool

ia.getchunk ()
Get the pixel values from a
regular region of the image

into an array

ia.maxfit ()
Find maximum and do
parabolic fit in the sky

ia.close()
Close the image tool

ia.coordsys()
Get the Coordinate System

of the image

ia.newimagefromarray()
Construct a casa image from

an array

ia.done()
Destroy this image tool

ia.convolve2D()
Convolve image by a 2D

kernel

ia.findsources()
Find point sources in the sky

