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: NOEMA LARGE PROGRAM

+ Sample of 20 young high-luminosity regions: L > 10% L,

+ Dust continuum & line observations at 1.3 mm (220 GHz)

NOrthem Extended
Millimeter Array

+ NOEMA: Plateau de Bure + new antennae

A, B, & D configurations in decreasing baseline length

Highest resolution ~ 0.3” => 600 AU at 2 kpc
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+ What are the fragmentation properties of high mass star forming

regions during the early evolutionary stages of cluster formation?

+ Can we identify genuine high-mass accretion disks, and if yes,
what are their properties?

+ How is the gas accumulated into the central cores and what are
the larger-scale gas accretion flow and infall properties?

+ What are the properties of the energetic outflows and how do
they relate to the underlying accretion disks?

+ What are the chemical properties of distinct substructures within
high-mass star-forming regions?
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: MOTIVATION

+ What are the fragmentation properties of high mass star forming
regions during the early evolutionary stages of cluster formation?

+ Can we identify genuine high-mass accretion disks, and if yes,
what are their properties?

+ How is the gas accumulated into the central cores and what are
the larger-scale gas accretion flow and infall properties?

+ What are the properties of the energetic outflows and how do
they relate to the underlying accretion disks?

+ What are the chemical properties of distinct substructures within
high-mass star-forming regions?
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Beuther et al. 2018
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NOEMA'’S VIEW AT MM WAVELENGTH
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W3(H,0) FRAGMENTATION: CONTINUUM
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W3(H>,0) FRAGMENTATION: CONTINUUM
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W3(H,0O) FRAGMENTATION: CONTINUUM

Flux Density
(Jy/beam)
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W3(H,0) FRAGMENTATION: LINES
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VELOCITY STRUCTURE

+ Velocity map of the region in CH3CN (123-113) shows clear
gradient in the E-W direction
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KINEMATICS OF FRAGMENTS

+ Velocity gradient observed for each fragment consistent with

molecular outflows
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(EXTENDED CASA LINE ANALYSIS SOFTWARE SUITE)

MODELLING WITH XCLASS

+ XCLASS: solves the radiative transter equation under LTE and
generates synthetic spectra that can be compared to the real spectra

+ Fitting CH3CN (12-11) k=4 to k =6 lines simultaneously along with
their CH3">CN isotopologues
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(EXTENDED CASA LINE ANALYSIS SOFTWARE SUITE)

MODELLING WITH XCLASS

+ XCLASS: solves the radiative transter equation under LTE and
generates synthetic spectra that can be compared to the real spectra
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MODELLING WITH XCLASS: OUTPUT
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Average temperature is warm: ~180 K
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TOOMRE STABILITY

+ For a differentially rotating disk, the shear force can provide
added stability against collapse

+ Quantified by Toomre (1964) via

sound speed

epicyclic frequency of the disk
= angular velocity for Keplerian rotation

surface density of the disk

+ A thin disk becomes unstable against axisymmetric gravitational
instabilities if Q < 1
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TOOMRE STABILITY

+ Outer rotating structure is Toomre-unstable in parts

Ahmadi et al., subm.
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TOOMRE STABILITY

+ Outer rotating structure is Toomre-unstable in parts

+ Further disk fragmentation possible

Ahmadi et al., subm.
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TOOMRE STABILITY

+ Outer rotating structure is Toomre-unstable in parts

+ Further disk fragmentation possible

Ahmadi et al., subm. — UNCERTAINTIES
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RADIATION HYDRO SIMULATIONS

+ Starting with 200 M ,in a 0.1 pc cube (see poster by R. Kuiper)

- 1500 au -

Ahmadi, Kuiper, Beuther, et al. (in prep.)
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1.3 MM DUST CONTINUUM \tt

= distance: 800 pc Eaamlea=mm__ distance: 2000 pc &
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1.3 MM DUST CONTINUUM
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1.3 MM DUST CONTINUUM

= distance: 800 pc Eaamlea=mm__ distance: 2000 pc &

+ NOEMA's view (0.4" -> 320 AU) + NOEMA's view (0.4" -> 800 AU)
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TOOMRE STABILITY: INCLINATIONS
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TOOMRE STABILITY: INCLINATIONS
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TOOMRE STABILITY: MASS SENSITIVITY
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Beuther et al. 2018
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CONCLUSIONS

+ High resolution observations needed to study early phase of high-
mass star formation -> CORE survey

+ Rotating structures detected around most objects
+ Different modes of fragmentation
+ Isolated cores vs. highly fragmented clumps

+ Core fragmentation on large scales & disk fragmentation on
small scales



OUTLOOK

+ Apply similar analyses to all other sources and study
fragmentation and disk kinematics in a statistical way

credit: Andre Rambaud




