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Cluster formation

« Most stars tend to form together in clusters (Lada & Lada 2003)
- Time scale, star formation efficiency...?
« “Slow” cluster formation (Tan et al. 2006; Nakamura & Li 2007)

« “Fast” cluster formation (Elmegreen 2000, 2007; Hartmann & Burkert 2007)

wop e s e o CMEF: precursor of IMF?

*  Submillimeter continuum/ near-IR extinction map

« nearby low mass clouds: a log-normal CMF with a
Salpeter-like high mass slope, which overall resembles

the stellar IMF( Motte et al. 1998; Tests & Sargent 1998;
* Johnstone et al. 2000; Alves et al. 2007)
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« CMF 1n massive star formation regions (Rodon et al. 2012;

- Ohashi et al. 2016; Kainulainen et al. 2017; Motte et al. 2018; Liu et
l al. 2018)
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(G286.21+0.17

« ~2000 Mo at a distance of 2.5 kpc, with a large global mass infall rate.

* the most massive and densest of the gas clumps in the sample of 300 HCO* clumps

(Barnes et al. 2010, 2011)
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ALMA cycle 3 observations
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Build the Core mass function

« Assuming optical thin thermal dust emission (kappa = 0.899 cm2 g~! ; gas/dust = 141)

* A uniform temperature of 20K (Zhang & Tan 2015).
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 flux correction: flux extending out of the 4sigma boundary not accounted
« number correction: low S/N cores missed due to noise fluctuation

==> core insertion experiment



Robustness of the Core mass function

« different algorithms
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3D MHD Simulation

 1nclude ACA data or use 12m data only?

 varying the spatial resolution

 what 1s the definition of a core?

==> test the core definition(identification/
characterization) from 3D MHD simulations

Wu et al. 2016, Christie et al. 2017



CMF 1n different environments
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G286 protoclust 32 dense clumps in seven infrared dark
rotoCluster

clouds (IRDCS) (Liu et al. 2018 )

The CMF in high pressure, early-stage environments of IRDC clumps may be top-heavy
compared to that in the more evolved, global environment of the G286 protoclusters.
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Integrated spectral line emission (ACA+TP)
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Integrated spectral line emission (12m+ACA+TP)
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Core velocity determination
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In comparison:

» Total mass of 1820 + 540 Mo from SED fitting at an
aperture of ~ 120" (Ma et al. in prep.)

« Required velocity dispersion for viral equilibrium: 2.34

+ 0.46 km/s

virial ratio

Number

4.0

3.5}

3.0}

N
(6]
T

N
@

=
w
T

=
o
T

0.5}

0.0

12

Detection statistics:

31 13

1071 10° 10!

102

10|

8t

(3

4l

2k

S N2D+

— DCO™ |7

O 1 1 1 1 1 1
-24 -23 -22 -21 -20 -19 -18 -17 -16 -15

Core velocity (km/s)

Core-to-core velocity dispersion: 1.53 £0.

13 km/s



Summary

The fiducial dendrogram-identified CMF in G286 can be fit with a power law slightly
shallower than, but still consistent with, the index of the Salpeter stellar initial mass
function of 1.35. Clumpfind gives a shallower high mass slope.

The CMF 1n high pressure, early-stage environments of IRDC clumps may be top-
heavy compared to that in the more evolved, global environment of the G286
protoclusters.

We measure the core velocity with NoD+ and DCO+ spectral lines for the continuum-
identified core sample. The core-to-core velocity dispersion is smaller than that

required for viral equilibrium, possibly indicating support from large-scale magnetic
field.

The core velocity is largely dependent on the large scale velocity gradient along the
filament.
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Core velocity v.s. large scale velocity gradient
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A massive multiple system 1n formation
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