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Giant Molecular Clouds (GMCs) T
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Most stars are formed in GMC e.g. Rosette Molecular Cloud
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Translucent Clumps B
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Rosette GMC not Homogeneous: C'O maps show that it consists of ~ 70 clumps with
Grey-scale: HI contours CO, 1°=28pc
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Temperature ~ 10 K = Sound speed ~ 0.2 km s~}

Alfvén speed ~ 2 km s~! = magnetic pressure dominates (Crutcher 1999)

Velocity dispersion ~ 1 km s™! - Supersonic and sub Alfvénic
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Physical model
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Simplest approach with self-consistent physics for the formation of a molecular
cloud and examine the results, before adding extra complexity

« 3D MHD
» Self-gravity
* Multi-phase ISM including thermal instability

In future, extra additions may be necessary:
» Shear and pressure waves, imitating galactic evolution
« Large-scale flows: SN shock, cloud collision

e “Turbulent” initial conditions applying randomised velocities

but if one can find a solution without recourse to extra complexity ...
lex parsimoniae / Occam’s razor



Thermal 1nstability
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Two stable phases exist in which heating balances cooling (Wolfire et al. 1995)

W —warm phase (T > 5000K, p <1, P/k <5000) |
C — cold phase (T < 160K, p > 10, P/k > 1600)
U — unstable phase w/u ¢ sor
In the unstable region, can form a length scale sof
from cooling time and sound speed ~ a few pc. log pressure 20 Vo8 wmpersum
Molecular cloud formation (10K) and stellar ~ *°% s 7 R
feedback (108K) requires multi-stage cooling: ORI el R
<10°K I' : Koyama & Inutsuka (2002), 2007 correction) cooling lengt
10*K<T<10%K T : CLOUDY 10.00 Gnat & Ferland (2012) ™|
>10%K [' : MEKAL - free-free bremsstrahlung. ol
Constant heating rate erg s'! independent of p,T
g 1—* — 2 ¢ 10—26 g p p

=> Establishes thermal equilibrium P and T by p°A = p 29 % 20

log particle density



Simple 3D Hydro condition
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Spherical cloud, radius 50pc, density ngy=1.1 - thermally unstable regime. =
External medium density 0.1, pressure same as cloud. Self-gravity

Impose random 10% density perturbations
on finest initial AMR grid level (512%) -0

Quiescent cloud v=0

0.0

Up to 10 levels of AMR (40963 0.037pc)

Mass: 1.7 10*° M_,,

Sound crossing time: 6.458 Myrs
Free fall time: 44.92 Myrs
Cooling time: 1.642 Myrs
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Simple 3D Hydro condition

UNIVERSITY OF LEEDS

Max density x 103

First peak not due to gravity, second one is => f’
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Detail at t=33.5 Myrs .
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Diameter ~Spc, Mass 182M_, ., Max density 2214, Mean density 177,
Max velocity 3.25 km s-! (in frame of dense region), 0.6 km s-! in dense gas.

Gravitationally bound, but not unstable (Bonnor-Ebert critical mass ~471 M

sun)



Enlarged 3D Hydro condition
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Domain size doubled, cloud radius increased to 100pc (r,,,, = 2.0), initial maximum
AMR resolution 10243 (finest level 0.29pc), Mass 1.35 10° M, ,

(a) Plane atx =0.2 (b) Plane at y=0.0 log( . . .
- - — '3% High density regions occur after

16.2 Myrs of diffuse cloud evolution
Increase resolution and simulate on...

- a further 28.5 Myrs

- resolution up to 0.039pc
| l Fellwalker (how apt!) clump identification

*1.0

1 v b == watershed algorithm (Berry 2015)

(c) Plane at z=-0.2 (d) Projection along x

log(Y)

e - 28 gravitationally isolated clumps

- size scale ~5pc

- masses 50-300 M, , >80% cold phase
- inward flow, dispersion 4-6 km s-!

" - unstable

1 !

e cur’) Will collapse to form clusters
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Most massive clump: 354 M, . (cold phase: 292M_, ), 5 pc diameter, max rho
1.5 10% (10-2° gm cm), mean rho ~230 (5 10-*> gm cm™), dispersion 6.2 km s°!.



3D MHD condition
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Exactly the same as hydro, but with uniform field in the x-direction.
- Regular (1.7 10* M, ) and enlarged (1.35 10°> M, ) clouds under consideration.
- Plasma f: 0.1|(strong field), 1.0 (plasma/magnetic pressure parity), 10.0 (weak field)
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Magnetic seismology of Musca ‘filament’ indicates it is like this!
(Tritsis & Tassis 2018, Science, vol 360, Issue 6389, pp.635-638)




3D MHD condition — in progress ﬂ
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The plasma f=10.0 (wea15< 1ﬁeld) case 1s looking very interesting
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Mechanical stellar wind feedback i
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Feedback simulations into these clouds have shown it’s possible to clear a
relatively small central cavity from a sheet-like parent molecular cloud.

What if the Rosette nebula... ...was formed by something like this:
, T (f=1 cloud, 40M,,, feedback)




Simulating the Rosette Nebula
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Density isosurface (red)
Wind isosurface (blue)
Magnetic field lines

Simulation 6: 40M, in a thin disc
log(p) on y=0 plane, t=1.5Myrs

1.3510° M,,, cloud

Evacuated hole
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Conclusions
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Adopting only 3D hydrodynamics, thermal instability and self-gravity, it is possible
to generate star-forming clumps from diffuse large-scale initial conditions.

With magnetic fields, sheets form, as recently inferred in the Musca cloud.

In the weak magnetic case, gravitational collapse intensifies field strength towards
mG magnitudes and eventually will create double-horseshoe field structure.

A thin, extended molecular cloud in a magnetic field can host the Rosette Nebula.

But, how to create very low plasma 3 conditions? Pressure waves next!

Thank you for listening. Any comments or questions?

Thermal instability driven initial condition: Wareing, Pittard, Falle & Van Loo, 2016, MNRAS, 459, 1803
Magnetic feedback general case: Wareing, Pittard & Falle, 2017, MNRAS, 465, 2757
Hydrodynamic feedback general case: Wareing, Pittard & Falle, 2017, MNRAS, 470, 2283

Rosette special case: Wareing, Pittard, Falle & Wright, 2018, MNRAS, 475, 3598

Clumps formed by TI + gravity Wareing, Pittard, Falle in preparation



The engine ﬂ
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« Magnetohydrodynamic version of MG (Morris Garages) with self—gravity.

« Parallelised, upwind, conservative shock-capturing scheme.

« Adaptive mesh refinement uses a coarse base grid (4x4x4) with 7 (or
more) levels of AMR to achieve a resolution up to 5123 (the Honda bit?).

- Why the wide range? Efficient computation of self-gravity. HONDA

TYPER
* Realistic heating and cooling methods

» Of key importance as it is the balance of these that establishes the
initial condition and defines the consequent evolution.

» Three field strengths considered, with B=B, 1, g Pkl thermal pressure
* The hydrodynamic case: = B*/24, magnetic pressure
* Pressure equivalence: f =1 - inferred to be the commonest in reality.
« Magnetically dominated regime: 5 =0.1




