

The University of Manchester

Simulating interferometric data

Adam Avison

What you will need...

- A sensible model image (FITS/CASA image).
- An idea of the resolution you will need to recover the emission you're trying to detect.

$$\theta \sim \frac{\lambda}{b_{max}}$$

• An idea of the largest angular scale of the emission, to avoid missing spacings problems.

$$LAS \sim 0.6 \frac{\lambda}{b_{min}}$$

... then you'll need some simulation tools...

THE OST	CASA
• Introduction to the OST	 simobserve simanalyse simalma

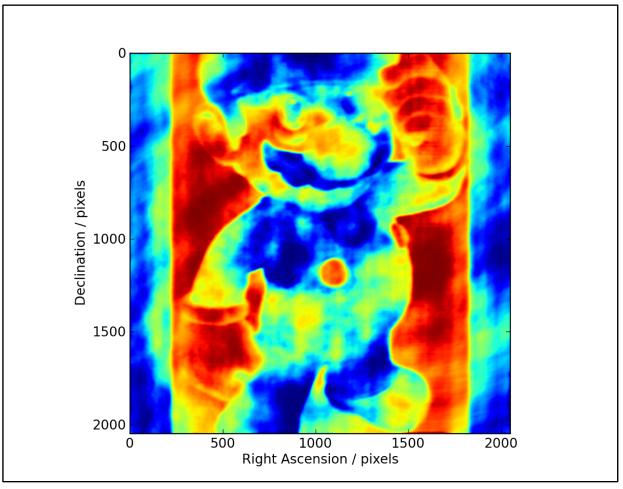
The Observation Support Tool

EUROPEAN ARC ALMA Regional Centre UK ALMA Observation Support Tool						
OST NEWS HELP QUEUE LIBRARY ALMA	Version 3.0					
OST Report: OST usage statisitics during the ALMA Cycle 3 Call.						
Array Setup:						
Instrument: ALMA	Select the desired ALMA antenna configuration.					
Sky Setup:						
Source model: OST Library: Central point source	Choose a library source model or supply your own.					
Upload: Browse No file selected.	You may upload your own model here (max 10MB).					
Declination: -35d00m00.0s	Ensure correct formatting of this string (+/-00d00m00.0s).					
Image peak / point flux in mJy 0.0	Rescale the image data with respect to new peak value.					
	Set to 0.0 for no rescaling of source model.					
Observation Setup:						
Observing mode: O Spectral O Continuum	Spectral or continuum observations?					
Central frequency in GHz: 260.7	The value entered must be within an ALMA band.					
Bandwidth in GHz 3: 4.125 OK	Select the total bandwidth for continuum observations.					
	Enter 7.5 GHz to select ALMA recommend full continuum setup.					
SPW 0: 254.0 BW 0: 1.875	Set the central frequency and bandwidth of each baseband/SPW in GHz.					
SPW 1: 252.0 BW 1: 1.5	SPWs can only be placed within the grey shaded areas. They will be truncated in the simulation if not.					
SPW 2: 267.0 BW 2: 0.75	More SPWs (up to SPW3) will become avaiable as you increase the total					
SPW 3: 0.0 BW 3: 0.0	bandwidth.					
Band = 6						
211	260.7 275					

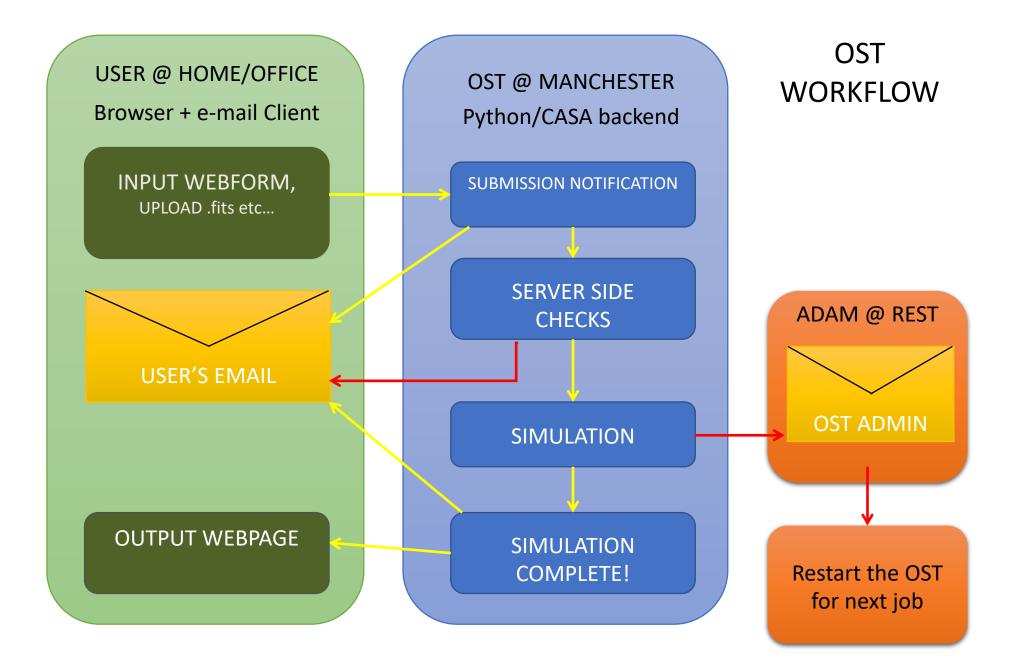
A web-based ALMA simulator aimed at the non-interferometry expert user.

The primary version is for ALMA and has been available since ALMA Cycle 0 CfP. Since when it has been extensively used (>20k simulations) by the international community in all ALMA call for proposals.

See


http://almaost.jb.man.ac.uk

There are also eMerlin and an AVN* version.


<u>http://almaost.jb.man.ac.uk/emerlin</u> <u>http://almaost.jb.man.ac.uk/AVN</u>

* For a hypothetical AVN telescope

OST Walkthrough

- OST Simulation of the 'Super' M-4R10 Galaxy

We'll let the OST run for a bit... on with...

Simulating within CASA

Simobserve

simobserve is used to create the simulated interferometric observations within CASA and **simanalyze** is used to analyze the output of **simobserve** (suprise suprise).

Creating simulations in CASA, a recipe:

- First select an existing image of the region or type of object you want to simulate, for use as your **skymodel**.
- Your input sky model can then be rescaled in pixel size, brightness, sky position, central frequency and channel width with e.g. incell
- The setpointings and observe parameters are then used to define the simulated observation, with similar parameters to defining real observations.
- The corruption due to the atmosphere can then be set in **thermalnoise**.
- With antennalist you can define which telescope you are using. CASA knows a lot... eMerlin, ALMA, VLA, ATCA, PdBI, EVN, etc etc.

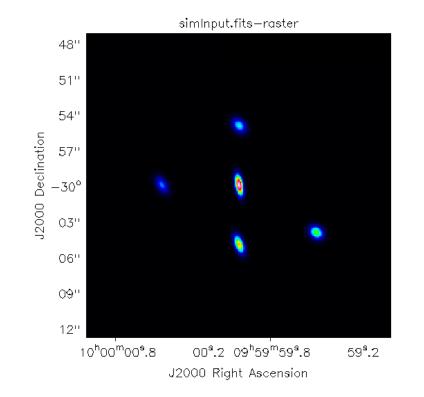
<pre>task # root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to</pre>
<pre># root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time</pre>
<pre># model image to observe # componentlist to observe # integration (sampling) time</pre>
<pre># componentlist to observe # integration (sampling) time</pre>
integration (sampling) time
center on model
<pre># angular size of map or "" to cover</pre>
model
<pre># hexagonal, square (raster), ALMA, etc</pre>
<pre># spacing in between pointings or</pre>
"0.25PB" or "" for ALMA default
<pre># INT=lambda/D/sqrt(3), SD=lambda/D/3</pre>
<pre># observation mode to simulate [int(int</pre>
<pre># erferometer) sd(singledish) ""(none)</pre>
]
<pre># interferometer antenna position file</pre>
<pre># date of observation - not critical</pre>
unless concatting simulations
hour angle of observation center e.g.
"-3:00:00", "5h", "-4.5" (a number
without units will be interpreted as
<pre># hours), or "transit"</pre>
<pre># total time of observation or number</pre>
<pre># of repetitions</pre>
<pre># pt source calibrator [experimental]</pre>
<pre># spectral frame of MS to create</pre>
<pre># add thermal noise: [tsys-atm tsys-</pre>
manual ""]
<pre># Precipitable Water Vapor in mm</pre>
<pre># ambient temperature</pre>
random number seed
<pre># cross polarization (interferometer</pre>
only)
display graphics at each stage to
<pre># [screen file both none]</pre>
overwrite files starting with
\$project

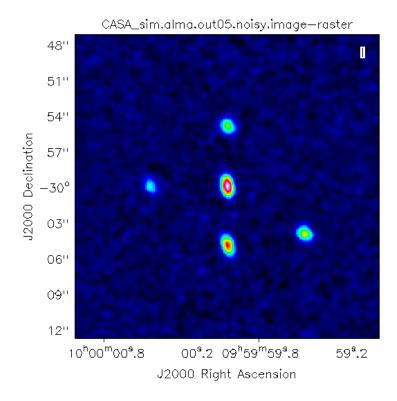
Simanalyze

Here we convert the CASA MS into an image file.

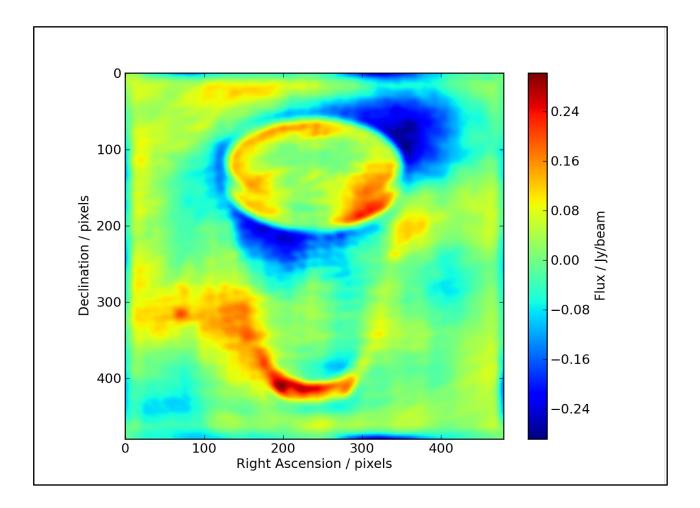
- The **image** parameter effectively ٠ acts like CLEANing a real dataset with iteration, weighting etc
- Next the analyze parameter ٠ defines which output images you would like from your analysis. Such as Clean image, UV coverage and image

CASA < 2>: inp sim > inp(sim				
			measure	ment sets created with simobserve
project	=	'sim'	#	root prefix for output file names
image	=	True	#	(re)image \$project.*.ms to
			#	<pre>\$project.image</pre>
vis		'default'	#	Measurement Set(s) to image
modelimage		11	#	lower resolution prior image to use
			#	in clean e.g. existing total power
			#	image
imsize		0	#	output image size in pixels (x,y) or
			#	0 to match model
imdirection			#	set output image direction,
			#	(otherwise center on the model)
cell			#	cell size with units e.g. "10arcsec"
			#	or "" to equal model
interactive		False	#	interactive clean? (make sure to set
			#	niter>0 also)
niter		0	#	maximum number of iterations (0 for
			#	dirty image)
threshold		'0.1mJy'	#	flux level (+units) to stop cleaning
weighting		'natural'	#	weighting to apply to visibilities.
			#	briggs will use robust=0.5
mask		0	#	Cleanbox(es), mask image(s),
			#	region(s), or a level
outertaper			#	uv-taper on outer baselines in uv-
			#	plane
pbcor		True	#	correct the output of synthesis
			#	images for primary beam response?
stokes		'I'	#	Stokes params to image
featherimage			#	image (e.g. total power) to feather
			#	with new image
analyze	=	False	#	(only first 6 selected outputs will
			#	be displayed)
graphics	=	'both'	#	display graphics at each stage to
			#	[screen file both none]
verbose	=	False		
overwrite	=	True	#	overwrite files starting with
			#	\$project
dryrun	=	False	#	only print information [experimental;
			#	only for interfermetric data]
logfile	=	••		

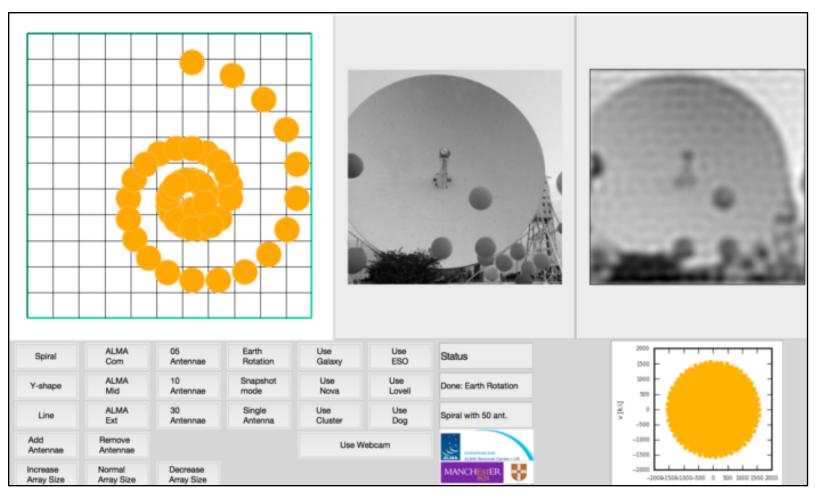

Simalma


• A wrapper of simobserve and simanalyze which has some of these tasks parameters set to typical ALMA values.

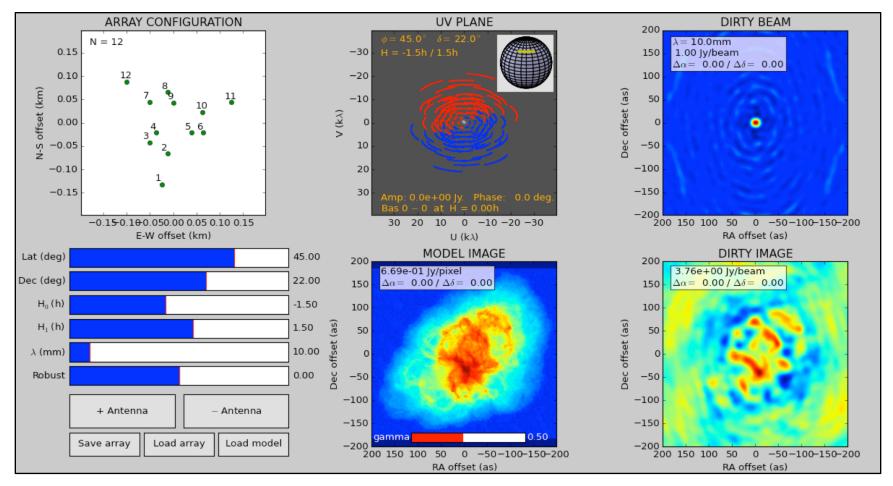
Simobserve/analyse


CASA.

• There is a (heavily commented) example script and associated fits file on this meeting's webpage for running simobserve/analyse within


Back to OST output

And just for fun, some toy interferometers


Pynterferometer

http://www.jb.man.ac.uk/pynterferometer/

APSYNSIM

http://www.nordic-alma.se/support/software-tools

Have a go with a toy interferometer

http://www.jb.man.ac.uk/~aavison/ESO_javascript/gridIndex.html

Useful for considering effects of multiple arrays