

ATOMIUM Dust formation and the shaping of circumstellar winds

A.M.S. Richards, L. Decin, C. Gottlieb & the ATOMIUM consortium

EUROPEAN ARC

ATOMIUM collaboration

PI Leen Decin, KU Leuven, Belgium CoPI Carl Gottlieb, CfA Harvard, USA Avison, Adam; Baudry, Alain; Beck, Elvire De; Blitz, M.; Boulangier, Jels; Cannon, Emily; Carrillo, Sanchez J.D.; Danilovich, Taïssa; De Ceuster, Frederik; De Koter, Alex; El Mellah, Ileyk; Etoka, Sandra; Fabrice, Herpin; Gielen, Clio; Gobrecht, David; Gottlieb, Elaine; Gray, Malcolm; Heard, Dwayne; Hutton, Lewis; James, A.; Jeste, Manali; Keller, Denise; Kervella, Pierre; Khouri, Theo; Lagadec, Eric; Long Lee Kin, Kelvin; MacDonald, Iain; Mangan, Thomas; Menten, Karl; Millar, Tom; Montagès, Miguel; Müller, Holger; Nuth, Joseph A.; Pimpanuwat, Bannawit; Plane, John; Price, Daniel; Raghvendra, Sahai; Richards, A.M.S.; Sindel, J.P.; Van der Sande, Marie; Wallstrom, Sofia; Ward, Homan; Waters, Rens; West, Niclas; Wiegert, Joachim; Wong, Ka-Tat; Yates, Jeremy; Zijlstra, Albert Based mostly in Europe and USA, originated from at least 5 continents Many thanks to ALMA staff in Chile & ESO for help with observations and pipelining

ALMA Tracing the Origins of Molecules In dUst-forming oxygen-rich M-type stars

- Study phase transition: simple molecules > larger gas-phase clusters > dust grains
 - Formed in outflows from O-rich evolved stars
 - Rich chemistry and relatively simple dynamical structure
- Establish dominant wind physical & chemical processes
 - Sample a range of stellar masses, pulsation behaviours, mass-loss rates, evolutionary phases
 - unravel the phase transition from gas-phase to dust species
 - pinpoint the chemical pathways
 - map the morphology of the wind
 - study the *interplay* between dynamical and chemical phenomena
- Large Programme Legacy:
 - New results for evolved stars, astrochemistry, and the chemical life cycle of the ISM
 - Better understanding of astrochemical processes from proto-planetary disks to ULIRGS

ALMA Tracing the Origins of Molecules In dUst-forming oxygen-rich M-type stars

- Study phase transition: simple molecules > larger gas-phase clusters > dust grains
- Dust precursor molecules at mm λ
 - FeO, MgO, MgOH, TiO, AlO
 - Other metal compounds, SiO

Analytic IR spectra: growth of $(Al_2O_3)_n$ clusters *Decin*+17 (*Demyck*+04 lab)

- Star, warm dust emission:
 - ALMA
 - SKA / ngVLA larger grains?
- Optical/IR
 - VLT/SPHERE
 - VLTI/MATISSE
 - MERCATOR/ **HERMES**

Red supergiants and AGB stars

Cool Red Supergiants & Miras

Sun-like stars

Herzsprung-Russell Diagram

ATOMIUM sample

Star	Туре	D*
		mas
S Pav	SRa	12
T Mic	SRb	9
U Del	SRb	8
RW Sco	OH/IR	5
V PsA	SRb	13
SV Aqr	LPV	4
R Hya	Mira	23
U Her	Mira	11
pi1 Gru	SRb	21
AH Sco	RSG	6
R Aql	Mira	12
W Aql	Mira	11
GY Aql	Mira	20
IRC-10529	OH/IR	6
KW Sgr	RSG	4
IRC+10011	OH/IR	7
VX Sgr	RSG	9

8e- \mathbf{O} Increasing mas Ň Sol S ra Ite σ **Φ** ĊЛ M0/yr

Distribution of Atomium stars

- Stars without previously known, dynamically significant companions
- Negligible surface
 rotation
- Mostly M-type, a few S-type

Miguel Montargès

Cool, red supergiants and AGB stars

- Contribute $\sim 85\%$ of gas and \sim 35% of dust to enrich the ISM
- Wind initiation:
 - Pulsations
 - Radiation pressure on lines
 - Scattering by nascent dust grains
- Dust driven wind once grains are formed
 - O-rich stars: metal oxides, silicates
- CO, SiO, HCN trace large-scale structure
- SiO, H₂O (OH) masers
 - e-MERLIN observations also

Design of Observations: tunings

- Four tunings, each with 4 spw, between 214 to 270 GHz
 - Some half-width to fit priority lines on both edges of sideband limits
 - Velocity resolution 1.1 to 1.4 km/s

GHz leband limits

Design of Observations: resolution

- Extended config., 15 30 mas beam, locate AIO, TiO etc. relative to dust formation • Compact config., ~0".9 beam, sensitive to SiO, CO etc. on up to ~10" scales
- Mid config., intermediate scales
- Combined images weight to balance resolution : surface brightness sensitivity

Data Reduction

Understand: Dust formation Wind driving Shaping of CSEs & PNe

Extract spectra Line ID (CDMS) Codes e.g. Hydro Phantom, AMVAC Chem e.g. KROME Masers...

Line cubes for each config ~70,000 chans per star. Over 1 million channels total

Combining configurations

- POSITION
 - Different configurations/tunings months apart
 - Re-align spw if > 1 chan drift in Earth' motion
 - Proper motions few few tens mas
 - Hipparcos positions only at proposal time - Prediction errors tens mas
 - Extended config astrometry ~5 mas
 - Align continuum peaks with Extended
- FREQUENCY
 - Earth's motion wrt LSR changes over months
 - Correct spw alignment if shift > 1 channel
- FLUX SCALE
 - Variability and uncertainty each 5~10%
 - Occasionally more
 - Compact knots far from star less variable - Masers near star can vary x10, x100...
 - Occasionally identified & corrected mis-scaling - Some compact maser variability artefacts remain

- MASKING \bullet

CUBE SIZE AND RESOLUTION - Image all data in 8 arcsec cubes - Some lines e.g. CO >20 arcsec radius • Image to 0.2 Primary Beam sensitivity - 8192² x 5-mas pixels x all channels = years! • Image selected lines to size required Adapt tapering to required balance

• Resolution v. surface brightness sensitivity

 Mid, Compact configs: automasking • Use Mid masks for Extended

Combined: 3-step process

• Clean brightest, compact masers

• Apply Mid masks (*multiscale clean*,

• Clean whole image *more weight to large scales*)

Much advice and troubleshooting help

Lumberjack

0.5

0.4

0.1

0.0

220

Flux

aperture)

https://github.com/adam-avison/LumberJack/

- 'Chops down' the line forest
 - Select channels without line emission
 - Looks for amplitudes spikes and gradients
- Take ALMA pipeline products
 - Use continuum to identify peak positions(s)
 - Get information required (resolution, predicted rms etc) from data
 - Produces list of line-free channels and diagnostic plots
- density (Jy/0".4 • User can tweak selection aperture
 - Currently script
 - Will be CASA task

Contact Adam Avison, UK ARC Node

~20 molecules identified, plus isotopologues, in >200 lines

Dust formation

- Best candidate for nucleation TiO₂?
 - But does not form at high enough T
 - $(Al_2O_3)_n$ will form at high T but needs nuclei
- So far identified (lines including isotopes):
 - AIO (3); AIOH (2); AI halides (11)
 - FeO (1)
 - KCI (5); NaCI (7)
 - TiO (8); TiO2 (2)
 - SiO (14)
 - plus many H₂O, OH, SO, SO₂ etc. etc.
- Wind model
 - O-rich winds accelerated slowly
 - Less radial momentum near star
 - Companion can have more effect

 $v_{\beta}(r) = v_{\infty}(1 - R_0/r)^{\beta}$

- → dust condensation radius
- → terminal velocity
- ⊢ ß exponent

Sub or supersonic inflowing boundary?

- └→ sonic point
- → modified ß-wind

Effective acceleration

- → stellar gravity
- → radiative pressure

Co-rotating frame

- \rightarrow inertial forces
- → non-spinning star

SiO v=0 J=5-4 OH/IR star

- Channel maps averaged
 - Complex structure, arcs

Compact central source

CO velocity distributions

- A to L AGB stars, increasing mass loss rate
 Red/blue shifted with respect to V_{*}
- All asymmetric
 - Bipolar, spiral, rose-like, disc, equatorial density enhancement or irregular
- Onset of PNe asymmetries on AGB

Fig. 2. Schematic illustration of our inferred evolution of wind morphology during the AGB phase. Most (sub)stellar companions have initial orbits (*a*_{ini}) greater than 20 au (*24*). These orbits widen during AGB evolution because the stellar mass decreases. Binary systems with close-orbiting companions often have a high-density EDE and accretion disk (orange) and complex inner wind dynamics. For increasingly wider orbits and higher mass-loss rates, the prevailing outflow morphology initially transitions to a bipolar structure (blue shading) and then to a regularly spaced spiral structure. EDEs or accretion disks can be present at these later stages, but at lower density.

- CO traces >500-au radius tilted expanding spiral
- Angle of V_{*} plane precesses with decreasing radius
- ALMA resolves companion at ~7au
 - SiO masers show innermost spiral and flow from primary to companion

Homan et al. 2020

Wind dynamics: Max. outflow velocity v. angular size

- High-excitation lines can show high velocities close to star
- Could be pulsation-related
- Lowest-excitation lines furthest from star
- Acceleration more gradual than simple momentum equation ($\beta \sim 1$)
 - C-rich stars: $\beta \sim 0.5$
- O-rich: mostly much higher values of β

$$v(r) = v_0 + (v_\infty - v_0) \left(1 - \frac{R_{\text{dust}}}{r}\right)'$$

- Grain surface properties evolve
 - Annealing? Fluffy/fractal?
- Some medium-excitation species at ≤100 R_{*} have higher terminal velocities than CO
 Additional forces implied

Gottlieb et al in prep

Modelling Asymmetric Circumstellar Envelopes

- Low mass loss rate stars: Equatorial density enhancement
- Medium mass loss rate: Bipolar/biconical outflow
- High mass loss rate: Spirals
- >50% stars $M < 1.5 M_{\odot}$ have (a) companion(s)
 - Red, white or brown dwarfs, planets....
 - Even higher fraction of higher mass stars
- More complex effect on gradually-accelerating O-rich winds
 - Modelling: *el Mellah et al. 2020*
- Stars with strong H₂O masers: no wind rotation, irregular shapes
 - Selection effect due to velocity coherence needed?
- SiO masers very widespread
 - many shapes including spirals!

ATOMIUM next steps

- Last 2 science goals: observations still to be completed
 - 1 year after they are delivered, enhanced products available
- Papers published/in prep:
 - Companions Shape Stellar Winds Decin et al. Science
 - ATOMIUM I. Motivation, Sample, Calibration, and Initial Results Gottlieb et al.
 - Chemistry of dust ingredients Danilovich et al.
 - Modelling & theory, kinematic comparisons, chemistry (*Millar*, El Mellah, Wahlstrom...)
 - Individual stars (*Homan pi Gru, ...*),
 - Optical (*Montarges..*) & cm-wave (*Richards...*) observations,
 - Masers (*Pimpanuit, Etoka, Baudry, Gray, Richards...*)

