
Introduction to CASA
Adam Avison

Which software to use?
Which telescope are

you using?

Use CASA

ALMA JVLA eMerlin ATCAEVN

Has your supervisor
insisted you use AIPS?

Maybe use
Miriad, but first

try to ...

SMAGMRT

Use (SMA’s)
Miriad

Old MERLIN Old VLA

Maybe use AIPS, but first
try to...

Have you reminded your
supervisor the year is 202x not

197x-199x?

YES

YES

NO

NO

What is CASA?

•Common Astronomy Software Applications

• A software package made up of C++ tools under an iPython interface

• Aims to support the current and next generation of radio telescopes
(ALMA, JVLA, ngVLA and SKA)

• Basically it does everything you need to take raw visibilities from a
telescope and turn them into science ready data.

Getting started

• The latest version of CASA is 5.7.x or 6.1
For this workshop we are using a slightly older version (5.6.1)
(and hopefully you have it all installed already).

• If not you can get a copy from:
https://casa.nrao.edu/casa_obtaining.shtml

• Versions from Linux (Red Hat only) and macOS.

https://casa.nrao.edu/casa_obtaining.shtml

About CASA versions
CASA 5.x

• Comes as a single ‘monolithic’
download
• Has its own local version of

Python 2.7
• Will eventually be phased out

CASA 6.x

• Available as a ‘monolithic’
release or can be ‘pip’ installed
allowing single modules to be
downloaded/called and better
integration with your local
Python environment
• Relies on Python 3.6.x
• The future of CASA

Other than those differences they function exactly the same and,
importantly, return the same results.

Working with CASA
• Once installed CASA can be started by typing 'casa’ in a terminal.
• This will startup the iPython interface in the terminal and launch the Logger GUI

The iPython interface is where the
work gets done

Logger will show you (lots) of useful (and occasionally
useless) message from the the tasks being run.

CASA tasks

• Tasks in CASA are the commands which are used to preform a specific
function.

• Each contain a set of user definable parameters.

• To see what parameters a task has we can use the inp command.

Example: applycal
• applycal is the task used to apply calibration tables to the data.

• Typing just inp will give you the inputs for the last CASA task you used.

Getting more information
• For most parameters within a task you can get more information on

what it wants by typing help(par.<param_name>)

Getting even more information

• CASA can take you straight to the CASA documentation webpage for a
given task.

• For the table of contents you can type doc(‘toc’)

• For some specific tasks you can type e.g. doc(‘applycal’)

• Alternately, a Google search for ‘CASAdocs NRAO <task> name’ should
bring up the relevant page. (Beware Google seems to have cached the ~2010 docs so
make sure you get the more recent versions)

Navigating the docs

<escape to a browser>

Working with CASA

• To execute a task:

1. Default the task parameters with default(taskname)
2. Fill in all the parameters you need
3. Do an inp to check you’ve filled everything in the right format
4. Type the task name to execute it

You can also enter the command and a list of parameters in one line
e.g.

applycal(vis=‘myVis.ms’, field=‘G123.45’, spw=‘0’)

CASA Data
• CASA runs on visibilities and images which are themselves a directory

structure.
• Raw visibilities come in ASDM (archival science data model) format.
• After import ALMA visibilities are used as a MeasurementSet (MS).

Scripts

• As you can imagine typing each parameter for each task every time you
want to execute it can be time consuming.

• Especially if you have a whole sample of sources to process in a similar way.

• Thankfully you can write Python scripts with CASA commands and execute
them in CASA (this is how the hands on will run later today)

• To execute a script in CASA use the command execfile(‘scriptname.py’)

Example script

import numpy as np #standard Python module importing

import os

default(applycal) #default task parameters

vis=‘myvis.ms’ #input task parameters

field=‘G123.45’

spw=‘0’

gaintable=[‘sometable.amp’]

gainfield=[2]

applycal() #execute task

import numpy as np #standard Python module importing

import os

for j in range(4):

default(applycal) #default task parameters

vis=‘myvis.ms’ #input task parameters

field=‘G123.45’

spw=str(j)

gaintable=[‘sometable.amp’]

gainfield=[2]

applycal() #execute task

Simple example, apply cal for one spectral window Slightly more advanced example, looping through
each spectral window

CASA Tasks and Tools

TASKS:
Front end, user friend command line
functions for data reduction,
manipulation in CASA.

Built upon the TOOL kit functions
available in CASA.

Typically have a bit more functionality
than functions available in GUIs e.g.
viewer

TOOLS:
‘Under the hood’ basic functions upon
which tasks are built.

Preform simple tasks but can be useful
in image manipulation and some
simulation tasks.

VS

Finally, some handy things CASA does:

• In the CASA terminal pressing the up arrow key will show you previous
commands you have used.
• If you type a letter or part of a word and press the up arrow it will scroll

through previously entered commands which start with those letters.
• The CASA terminal also “tab completes” so if you start typing something

and hit the Tab key you’ll be given a list of options which match the text
you have written so far.
• If you run a task and exit CASA, then restart CASA later in the same

directory you can type tget <taskname> . This will restore the previous
parameters from your last *successful* run of that task.
(They are stored in the <taskname>.lsat file you will see popping up as you run CASA)

