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Why use an interferometer?
- What do astronomers want?

• High resolution

θ ≈
λ
D

Parkes 64m Lovell 76m Efflesburg 100m

• High sensitivity

Sν , rms =
2kTsys

Ae τ Δν



Resolution
Imagine we want Hubble 
resolution:

D=2.4m, λ=600nm  -> θ=0.05arcsec

At radio wavelengths, say 4.5cm 
(6.7GHz): 

D would need to be ~185km

Sensitivity
Basically, the bigger the better!

Sν , rms =
2kTsys

Ae τ Δν

Effective area of your dish



How do we get it? 
• Interferometry

θ ≈
λ
bmax

ΔSrms =
2kTsys

Ae N(N −1)τ Δν

ALMA, 54 12m dishes and 12 7m dishes spread over 14km

𝑀𝑅𝑆 ~ 0.6
𝜆

𝑏!"#



Most peoples first impression of 
interferometry

Dishes
Dark Arts

Pretty pictures

... hopefully by the end of this talk we’ll have cleared up the bit in the middle



The two element interferometer



x(t) = v1 cos2πνt y(t) = v2 cos2νπ (t +τ geo )

Correlator’s functionRx,y (τ geo ) = x⊗ y = X(ν )Y *(ν )
Do the maths

Rx,y (τ geo ) = v1v2 cos2πτ geo

Receiver outputs

Correlator output

The two element interferometer
What are we trying to do?
- Recreate the sky brightness distribution of astrophysical 
sources.

Delay between wavefronts arriving at x then y:

τ geo =
b ⋅ s
c

=
bscosρ

c



That’s all well and good but how does this

tell us anything about the sky 
brightness distribution?

Rx,y (τ geo ) = v1v2 cos2πντ geo



Rx,y (τ geo ) = v1v2 cos2πντ geo

...

v1 and v2, the voltage outputs of x & y are directly related to:
• The brightness distribution, I(s), of the astronomical object
• as seen over solid angle dΩ
• and A(s) the area of the dish we use to observe it.

Leading to ...

Rx,y (τ geo ) = Δν A(s)I(s)cos2πbλ ⋅ s d∫ Ω



Adding in a bit more reality...

• The vector s is comprise of the addition of s0 and σ (so s=s0 +σ).
• We set τgeo to zero with instrumental delays
• Meaning all delays in the data are from the vector σ

We then define the Complex Visibility as: 

V ≡ V eiφV = A(σ )I(σ ) e∫
−i2πbλ ⋅σdΩ

which is rather nice as V is the Fourier transform of I.



Relating the visibility equation to the 
correlator output gives

Rx,y = A0 V Δν cos(2πνbλ ⋅ s0 −φV )

Known!*

* After proper calibration

Rx,y (τ geo ) = Δν A(s)I(s)cos2πbλ ⋅ s d∫ Ω V ≡ V eiφV = A(σ )I(σ ) e∫
−i2πbλ ⋅σdΩ



A coordinate system for interferometry 

l

m

We define u and v, as E-W and 
N-S positions w.r.t w axis which 
is parallel to s0.

l and m as direction
cosines of s we can write the 
visibility  equation as:

V (u,v) = A(l,m)I(l,m) e∫
−i2π (ul+vm) dldm

1− l2 −m2

Given l and m are small the small angle approx applies and V(u,v) becomes a
direct  Fourier transform of I(x,y)



In its full gory glory the... Measurement 
Equation

Vij =MijBijGijDij EijPijTijFijSIν (l,m) e∫
−i2π (uijl+vijm) dldm

1− l2 −m2
+Qij

Vij = What we measure
Iν = What we want
Qij = additive errors
S = maps I to polarisation
i,j = telescope pair
Mij = Multiplicative baselines errors
Bij = Bandpass reponse
Gij = Gerenalised electronic gain
Dij = polarisation leakage
Eij = Antenna voltage pattern
Pij = paralatic angle
Tij =Tropospheric effects

Green= vectors
Blue= Scalars
Red= Part of the Jones Matrix

Slide cribbed from A.M.S.Richards



What we measure

V (u,v) = A(l,m)I(l,m) e∫
−i2π (ul+vm) dldm

1− l2 −m2

Rx,y = A0 V Δν cos(2πνbλ ⋅ s0 −φV )Correlator output

Visibility equation

𝐼! 𝑙, 𝑚 = &
"#

#

𝑆 𝑢, 𝑣 𝑉 𝑢, 𝑣 𝑒$%& '()*+ 𝑑𝑢𝑑𝑣Dirty image

Eq. 1

Eq. 2

Eq. 3



uv-coverage



Filling the uv-plane
uv-coverage of an 
interferometer set out in a 
logarithmic spiral pattern 
comprised of two, five, ten 
and fifty antennas (top to 
bottom) 
and observing for 10 s, 2, 4, 
and 6 h (left to right). 

t =        10s               2h                4h                6h
Nant =

2

5

10

50



We want to fill the uv-plane because the uv-coverage is the FT of the 
synthesised beam, B. The greater the uv-coverage the better behaved the sidelobes are.

6 dishes
(~15 mins)

42 dishes
(~15 mins)

Filling the uv-plane



Filling the uv-plane

V (u,v) = A(l,m)I(l,m) e∫
−i2π (ul+vm) dldm

1− l2 −m2

For each antenna pair at each integration interval we get one uv measurement.  

To optimize uv-coverage, thus giving us a ‘nicer’ synthesized beam we would ideally have:

1) A large number of dishes, thus more antenna pairs (N(N-1))
2) Greater time on source, more uv-points from the antennas we have.
3) An array configuration with a larger number of unique antenna spacings.



Visual Example



Calibration will be covered tomorrow



Imaging and cleaning



What we measure (reminder)

V (u,v) = A(l,m)I(l,m) e∫
−i2π (ul+vm) dldm

1− l2 −m2

Rx,y = A0 V Δν cos(2πνbλ ⋅ s0 −φV )Correlator output

Visibility equation

𝐼! 𝑙, 𝑚 = &
"#

#

𝑆 𝑢, 𝑣 𝑉 𝑢, 𝑣 𝑒$%& '()*+ 𝑑𝑢𝑑𝑣Dirty image

Eq. 1

Eq. 2

Eq. 3



Sampling function
Let us call the sampling of the uv-plane (aka uv-coverage), S, the sampling function

Given this the synthesized beam, B, is  B=FT(S	).

And for each uv-point we have an observed visibility, V(u,v), so we can define the sampled visibility function as:

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

𝑉$ 𝑢, 𝑣 ≡ :
%&'

(

𝛿 𝑢 − 𝑢% , 𝑣 − 𝑣% 𝑉(𝑢% , 𝑣%)

𝑆 𝑢, 𝑣 = :
%&'

(

𝛿 𝑢 − 𝑢% , 𝑣 − 𝑣%

So V	s=SV		and from earlier (eq. 3) I	D=	FT(V	S	)	=	FT	(SV	). From which it follows that I	D is the measured sky brightness
convolved with the synthesis beam, B.



Weighting

This is a truncated version of Chapter 7 (Briggs, Schwab & Sramek) of “Synthesis Imaging in Radio Astronomy II”

Given this we can introduce weighting functions to control the shape of the synthesised beam.

DON’T WORRY TOO MUCH ABOUT THIS NOW, IT IS A SUBTLETY YOU NEED TO THINK ABOUT WHEN 
ACTUALLY IMAGING...

Rk= Weights relating to data quality, i.e. down weight bad data. This is observation dependent and we 
have no post observation control over it (so ignore).

Tk= Tapering function. Apply a tapering function (i.e. Gaussian), to the uv-coverage to for example 
downweight the outer uv-points lowering resolution. 

Dk= Density weighting, applies some weight based on the clustering of uv points on a grid... This is the 
most commonly used type of weighting.

And as per the previous slide we can define the weighted and sampled visibility function as V	W=WV.

𝑊 𝑢, 𝑣 = :
%&'

(

𝑅%𝐷%𝑇%𝛿 𝑢 − 𝑢% , 𝑣 − 𝑣%



Imaging the data

We now have the sampled and weighted visibilities, V	W.

In order to efficiently make an image of our target sky brightness distribution, 
I, we need to take the Fourier transform of this using Fast Fourier Transforms 
(FFTs).

This requires the V	W data to be gridded on to a regular grid.

This is done by convolution with some suitable gridding function*. Leaving us 
ultimately with some weighted and gridded visibilities which can be FFT’d to 
give us our dirty image ID.

*Discussion of gridding algorithms is a little beyond the scope of this workshop, please check the references
at the start of this talk for more information.



CLEAN-ing
We’ve seen that our dirty image ID is the sky brightness distribution 
convolved with the synthesised beam B.

To get a better representation of the sky brightness distribution we need 
to remove the artefacts introduced by B. To achieve this we use CLEAN*

*CLEAN is not an acronym, but it is usually captialised. I think it is merely tradition at this point. 



Simple CLEAN overview
The Högbom (1974) CLEANing algorithm is the simplest CLEAN algorithm and is very illustrative of how CLEAN works
in general.

In words the Högbom algorithm works as follows:

1) Find the magnitude and position of peak emission in the dirty image.
2) Subtract from the dirty image the dirty beam, B, scaled by some gain value (i.e. 0.1). Creating a ‘residual’ image.
3) Note the position and magnitude subtracted as a point in a model.
4) Repeat 1-3 until a user defined threshold is reached, either some noise limit (in the residual) or a given number of 

iterations.
5) Convolve the final model with an idealised beam. I.e. a beam based on the interferometer if it was a huge single dish.

Or in a 2D example on the next page



Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Ite
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n 

1

Residual Image after subtracting DB from peak in DI CLEAN components in Model Image



Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

Ite
ra

tio
n 

n

Residual Image after subtracting several DBs from located 
peaks in DI

CLEAN components in Model Image



Högbom 2D example

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)
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Residual Image after subtracting enough DBs from 
located peaks in DI until threshold met.

CLEAN components in model Image after final CLEAN 
loop



Högbom 2D example

CLEAN components in model Image after final 
CLEAN loop

Idealized beam

Final reconstructed image



... and in 3D

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)

à Increasing CLEAN cycles à



... and in 3D

True sky of 5 point sources Dirty Beam (DB) Dirty Image + noise, (DI)



And after all that you’ll have a nice image/data cube from which you can 
actually do some Science!



Further Reading

The slides from this talk are based on the fundamentals of interferometry which are 
explained in detail across:

• “Interferometry and Synthesis in Radio Astronomy” - Thompson, Moran & Swenson 

• “Synthesis Imaging in Radio Astronomy II” – NRAO

• “An introduction to Radio Astronomy” – Burke and Graham-Smith (4th edition out now as Burke, 
Graham-Smith & Wilkinson)

• “Tools of Radio Astronomy” – Wilson, Rohfls & Hüttemeister

• “The CASA Cookbook” – Ott & Kern et al.



¡Cheers!
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¿Questions?


