How parameter selection affects my image?

Ana Karla Díaz-Rodríguez

Uniform Each cell weights the same (weight cell 1 = weight cell 2) Visibilities in densely sampled regions of the uv-plane are down-weighted Generally the shortest baselines are down-weighted

Produces best angular resolution and higher noise

Briggs (Robust)

Smoothly varies between natural (robust = 2) and uniform (robust = -2)

> Robust = 0 good trade-off between angular resolution and sensitivity

High signal-to-noise samples are weighted by sample density to optimize for angular resolution, and low signal-to-noise data are naturally weighted to optimize for sensitivity

(weight_cell 1 = weight_cell 3
weight_cell 4 > weight_cell 2)

flux_2* = 66 mJy rms_3 = 0.16 mJy/beam beam = 1.45"x0.98"; -86.33° flux_1* = 42 mJy flux_2* = 65 mJy rms_3 = 0.13 mJy/beam beam = 1.27"x0.85"; 87.71° flux_1* = 42 mJy flux_2* = 63 mJy rms_3 = 0.54 mJy/beam beam = 1.09"x0.72"; 89.40°

* measured in PB-corrected maps

UV tapering

duy 40 -

UV tapering

150000 UVwave (λ)

200000

<u>I I I I I I I</u>

250000

UV range

80

UV range

(Tip) Blanking

(Tip) Blanking

(5σ contour of Mom 0)

(Tip) Blanking

task immath using a mask (5σ contour of Mom 0)

