
Preparation + hands-on demo
Dan Walker

Imaging ALMA data

How do we actually image ALMA data?

• With an interferometer, we observe an interference pattern that is
expressed by the complex visibility V(u,v)

• Inverse Fourier transform of V(u,v) → image in (x,y)

• Image has complicated artefacts due to incomplete sampling of uv-
plane. This is the so-called ‘dirty image’ — a convolution of the sky
brightness and the ‘dirty beam’ (point spread function).

• Solution is to deconvolve dirty beam from dirty image to recover the
true sky brightness

Deconvolution
• Dirty image is not ideal for science due to image artefacts

• Deconvolution aims to reconstruct the true sky brightness, but …

• Missing information due to incomplete uv-coverage

• Data is corrupted by noise

• There is no unique solution

→ Aim is to find a good model of the sky brightness

Most widely used deconvolution method is the CLEAN algorithm (Hogbom 1974)

Basic CLEAN algorithm
Initialise a residual map (dirty map)

• Identify strongest feature in residual map as a point source

• Add point source to the clean model

• Convolve the point source with dirty beam and subtract from residual map

• If stopping criteria not reached, do next iteration

Convolve clean model with the ‘clean beam’ (usually a Gaussian estimated from the
dirty beam) and add residual map to make the final image

Dirty image Clean model

Cleaned image Residual

Target: PJ113921.7

• Dusty star-forming galaxy

• Redshift (z) = 2.858

• Gravitationally-lensed galaxy

Image: ALMA 1 mm dust continuum

Contours: Hubble 1.6 µm

[Source: ALMA proposal 2021.1.00499.S]

PJ113921.7 ALMA data

• ALMA project ID: 2021.1.00499.S

• Band 3 (~ 87 - 102.5 GHz)

• 3x Continuum SPWs & 1x CO (3-2) SPW

• Two different ALMA 12m observations:

• TM1: longer baseline / higher angular resolution

• TM2: shorter baseline / lower angular resolution

• We will use the TM2 data only (smaller -> faster processing)

PJ113921.7 ALMA data
uid___A002_Xf396d6_X45bb.ms

• You should have this calibrated MS if you ran scriptForPI.py

• Full calibrated MS can be downloaded here (~ 23 GB)

• Science target only MS is available here (~ 6.2 GB)

imaging_script.py

• This is the script that we will walk through in this example to clean the
continuum and CO data

• http://almanas.jb.man.ac.uk/alma/Web/Meetings/2023/
UKHybridWorkshop/imaging_script.py

https://www.alma.ac.uk/index.php/meetings/uk-arc-node-meetings/539-uk-alma-2023-virtual-workshop
http://almanas.jb.man.ac.uk/alma/Web/Meetings/2023/UKHybridWorkshop/uid___A002_Xf396d6_X45bb.target.ms.tar.gz
http://almanas.jb.man.ac.uk/alma/Web/Meetings/2023/UKHybridWorkshop/imaging_script.py
http://almanas.jb.man.ac.uk/alma/Web/Meetings/2023/UKHybridWorkshop/imaging_script.py

Continuum imaging
• Before imaging the continuum, we need to identify any molecular line

emission — this will contaminate the continuum if we don’t exclude it

• For this example, we will use the line frequency ranges identified by
the ALMA pipeline* (contchans parameter in the imaging script)

• Another method is to look at each spectral window using the CASA
task plotms, and manually identifying the continuum ranges:

• This is the CO line in
spectral window 25 of
our example dataset,
which should not be
included when
generating the
continuum image

Continuum imaging
To image the data, we will use the CASA task tclean. We’ll start by making a ‘dirty
image’ (0 clean iterations) — this will give us a first look at the data and allow us to
refine our choice of parameters. Let’s take a look at some of the parameters:

 tclean(vis = visfile,

 imagename = 'PJ113921.7.cont.dirty',

 field = ‘PJ113921.7',

 spw = contchans,

 specmode = 'cont',

 imsize = [1250, 1250],

 cell = '0.09arcsec',

 deconvolver = 'hogbom',

 niter = 0,

 weighting = 'briggs',

 robust = 0.5,

 interactive = False)

Name of input measurement set

Prefix of output image files

Field name to be imaged

Channel ranges to be used to generate continuum

Spectral mode (‘cont’ for continuum)

Image size (2*Field of view / pixel size)

Pixel size (generally ~ 𝜽/5, 𝜽 = angular resolution)

Deconvolution algorithm to be used

Number of clean iterations

Weighting scheme to be used

Robust parameter for Briggs weighting (robust = -2 gives
uniform weighting. robust = 2 gives natural weighting)

Option to clean using interactive GUI

Continuum imaging

RMS ~ 1.3e-5 Jy

Field is mostly blank

Lensed galaxy clearly
detected in centre of field

Dirty image

Continuum imaging
• Based on the RMS in our dirty image, we can specify a sensible

cleaning threshold, typically N x RMS, where N is typically ~ 1-5

• Need to set number of clean iterations. If the cleaning threshold is
sensible, this can be arbitrarily high, as the cleaning should stop once
the threshold has been reached

• A poor choice of cleaning parameters may lead to divergence and
general weirdness!

• For this demo, the image size has been decreased to the central
150x150 pixels — this excludes the blank areas and speeds things up

• Finally, a quick note on (auto-)masking, weighting, and primary-beam
correction …

Continuum imaging (masking)
• We can use a cleaning mask to tell the algorithm where there is real

emission to be cleaned. This can be done by:

• Providing a pre-made mask as a cleaning parameter

Continuum imaging (masking)
• We can use a cleaning mask to tell the algorithm where there is real

emission to be cleaned. This can be done by:

• Using the interactive cleaning GUI to manually draw a mask

Continuum imaging (masking)
• We can use a cleaning mask to tell the algorithm where there is real

emission to be cleaned. This can be done by:

• Using the built-in auto-masking functionality

• https://casaguides.nrao.edu/index.php/Automasking_Guide

• Much more convenient, and can do a
very good job

• Requires careful choice of parameters
— the default parameters typically do a
reasonable job, but can often be
improved

https://casaguides.nrao.edu/index.php/Automasking_Guide

Automasking

Need to be more strict
with masking thresholds Better …

Cleaned image (+ mask) Residual (+mask)

Automasking

Weighting schemes

Natural (robust = 2) Briggs (robust = 0) Uniform (robust = -2)

• Choice of weighting has a significant impact on the resultant image

• Trade-off between angular resolution and sensitivity

• Need to decide what is most important for your science

• Robust = 0.5 is often used — good compromise between the two

Primary beam correction
• Antenna response is not uniform across field of view — inherently noisier

at the edges

• This is not accounted for during
imaging, and so we need to correct
for it

• This can be done in two ways:

• Setting pbcor=True during
cleaning. This will output two
images — with and without
primary beam correction

• Using the impbcor task post-
cleaning

Primary beam correction

With PB-correction Without PB-correction

Continuum imaging
• Let’s try full clean of the continuum using:

• Cleaning threshold (based on RMS in dirty image)

• Cropped image size (optional, purely for efficiency)

• pbcor = True (to correct for primary beam response)

• Masking

• the script has auto-masking pre-filled, but I’d encourage you to
delete these parameters, and set interactive=True to experiment
with manual masking

• A range of robust values

• Plus any other parameters you want to play with!

Automasking parameters
usemask = 'auto-multithresh'

• noisethreshold: sets the noise threshold above which emission is masked during the
initial round of mask creation

• sidelobethreshold = sets a threshold based on the sidelobe level, above which
significant emission is masked during the initial round of mask creation

• lownoisethreshold: defines threshold into which the initial mask is expanded to
include lower signal-to-noise regions

• minbeamfrac: minimum size a region must be to be retained in the mask (as a fraction
of the beam size)

• growiterations: number of iterations per clean cycle for mask growth. A larger
number will allow the mask to grow to capture fainter, more extended emission (if
present), but may increase the processing time significantly

Note that either noisethreshold or sidelobethreshold is used depending on which threshold is higher.

Spectral line imaging
• The process of cleaning line data is broadly similar to cleaning the

continuum, but there are some extra steps and parameters:

• We now have a third dimension (frequency/velocity) made up of
channels, the spacing of which is related to the spectral resolution of
the data

• The emission changes from channel-to-channel, which makes
cleaning and masking more complex

• More data → longer processing time

• The dust continuum level must be subtracted to ensure that we are
imaging only the line emission

Splitting out the CO data
• For this particular dataset there are four SPWs, only one of which

contains spectral line emission (recall this plot from yesterday)

• This is CO (3-2) emission, which is contained in SPW 25

• To make the data more easily manageable, we can split out this SPW:

split(vis = visfile,

 outputvis = visfile+'.split',

 field = 'PJ113921.7',

 spw = '25',

 datacolumn = 'corrected')

Note: splitting out SPWs re-indexes them. In the output file there will only be one SPW, indexed as ‘0’

Continuum subtraction
• Having split out the CO SPW, we need to subtract the continuum emission.

This can be done after imaging, but it’s generally recommended to do this
beforehand.

• Use CASA task uvcontsub to subtract the continuum from the uv data

uvcontsub(vis = visfile+'.split',

 field = 'PJ113921.7',

 spw = '0',

 fitspw = contchans_CO,

 fitorder = 1,

 excludechans = False,

 want_cont = False)

CO cube imaging
• Now we can start imaging the CO emission! Let’s start by making a dirty image (0 clean iterations),

just like we did for the continuum

 tclean(vis = visfile+'.split.contsub',

 imagename = 'PJ113921.7.CO.cube.dirty',

 spw = '0',

 restfreq = '345.79599GHz',

 specmode = 'cube',

 imsize = [1250, 1250],

 cell = '0.09arcsec',

 deconvolver = 'hogbom',

 niter = 0,

 weighting = 'briggsbwtaper',

 robust = 0.5,

 gridder = 'standard',

 interactive = False)

CO cube imaging
• As for the continuum, we see that the emission is concentrated to the

inner portion of the field, so we can crop the image when cleaning

• We also see that the line emission only appears in a small portion of the
channels, so we can restrict the imaging to just these channels

• Once again, we want to increase the number of clean iterations, add a
cleaning threshold, and add auto masking parameters …

CO cube imaging
 tclean(vis = visfile+'.split.contsub',

 imagename = 'PJ113921.7.CO.cube',

 phasecenter = 'ICRS 11:39:21.728 20.24.51.838',

 spw = '0',

 restfreq = '345.79599GHz',

 specmode = 'cube',

 imsize = [150, 150],

 cell = '0.09arcsec',

 deconvolver = 'hogbom',

 niter = 1000000,

 weighting = 'briggsbwtaper',

 robust = 0.5,

 pbcor = True,

 threshold = '0.001Jy',

 nchan = 100,

 start = 200,

 width = 1,

 interactive = False,

 usemask = 'auto-multithresh',

 sidelobethreshold = 2.0,

 noisethreshold = 4.0,

 lownoisethreshold = 2.5)

Image Residual

CO cube imaging

Integrated intensity

(moment 0)

Maximum intensity

(moment 8)

Velocity field

(moment 1)

Moment maps
immoments(imagename = 'PJ113921.7.CO.cube.image',

 moments = [0, 1, 8],

 region = 'moment_region.crtf',

 chans = '10~55',

 includepix = [0.0007, 100],

 outfile = 'PJ113921.7.CO.cube.moment')

Spectral Cube (Python)

• Toolkit for reading, writing, manipulating, and analysing spectral cube
data

• Create sub-cubes, moments, extract spectra etc.

• Designed to work with very large cubes that are too large to load into
memory

Pyspeckit (Python)

• Analysis toolkit for analysing spectra

• Plotting, line fitting, line modelling, and more

Alternative cube analysis tools

https://spectral-cube.readthedocs.io/en/latest/index.html

import os

import glob

import pyspeckit

import matplotlib.pyplot as plt

from spectral_cube import SpectralCube

filename = 'PJ113921.7.CO.cube.image.crop.fits'

cube = SpectralCube.read(filename)

meanspec = cube.mean(axis=(1,2))

assert meanspec.size == cube.shape[0]

meanspec.write(filename.replace('.fits', '.meanspec.fits'))

sp = pyspeckit.Spectrum(filename.replace('.fits', '.meanspec.fits'))

sp.plotter(color = 'k', linestyle='-')

plt.tight_layout()

sp.plotter.savefig('mean_spec_crop.pdf')

plt.close()

Alternative cube analysis tools

Parallel processing (Linux only!)
You can run tclean in parallel across multiple cores in order to distribute
the processing and speed things up:

• In tclean, specify the parameter parallel=True

• Place your tclean command in a .py script

• Run your script via:

/path_to_casa/bin/mpicasa -n 8 /path_to_casa/bin/casa --
nologger -c ./imaging_script.py

[You can also place the above command into a .sh script and execute it in
the background]

Number of cores

SCOUSE(py): Semi-automated multi-COmponent Universal
Spectral-line fitting Engine

Available for download: https://scousepy.readthedocs.io/en/latest/

https://scousepy.readthedocs.io/en/latest/

For each averaged spectrum, scousepy provides an initial fit, which the
user cycles through an interactive GUI to either accept or update the fit.

scousepy will then enter the fully automated stage, where it will take these
averaged fits, and pass the parameters to fit the spectrum at every single
pixel within each averaging area.

Once the automated fitting has completed, it will output an ascii file
containing many measured parameters per pixel, e.g.:

• Number of components at that pixel location

• x

• y

• Amplitude

• Centroid velocity

• Velocity dispersion

• RMS

You can plot these data in various ways to make some cool plots …

“Large-scale” perspective; “Small-scale” detail

Henshaw et al. 2016aSCOUSEpy …spectral line fitting of the inner ~250 pc of the Milky Way

• HNCO @ 3mm

• 1.7” res ~ 0.07pc

• 3.4 km/s spectral resolution; 1.7km/s channels

Data courtesy of Rathborne et al. 2014b, 2015:

ALMA cycle 0: ALMA#2011.0.00217.S

G0.253+0.016 (‘the Brick’, GC cloud)

Henshaw et al. 2019SCOUSE’s view of the Brick

The Brick is a highly complex and sub-structured molecular cloud,
and velocity oscillations are ubiquitous

Henshaw et al. 2019

Henshaw et al. 2020

You can find a tutorial here if you fancy trying it yourself:

https://scousepy.readthedocs.io/en/latest/tutorial_v2.0.0.html

https://scousepy.readthedocs.io/en/latest/tutorial_v2.0.0.html

