The Relation of Dust to Star Formation in Nearby Galaxies

George J. Bendo

UK ALMA Regional Centre Node Jodrell Bank Centre for Astrophysics The University of Manchester

Outline

- Comparisons of Herschel-based infrared colour variations to dust heating sources in nearby galaxies
 - Qualitative approach
 - Quantitative approach (binned map data)
 - Quantitative approach (reproductions of infrared colour maps)
- Comparisons of ALMA observations of hydrogen line and free-free emission to infrared star formation tracers

Infrared Colour Variations

Infrared emission in any band is a function of both the dust temperature and dust mass, so the emission could be related to star formation because:

- The emission traces the energy absorbed by dust from star forming regions.
- The emission traces the amount of fuel available for star formation (the Kennicutt-Schmidt law).

Infrared colours are primarily sensitive to the dust temperature itself. Relating the infrared colours to dust healing sources indicates how the dust is heated.

This is important for:

- Using dust emission as a star formation tracer.
- Modelling dust emission and radiative transfer correctly.

Qualitative Analysis

- Compare images of the infrared colour ratios to the following images:
 - $H\alpha + 24 \mu m$ emission (star formation tracer)
 - 3.6 µm emission (evolved stellar population tracer)
- Visual similarities will indicate which stellar population is heating the dust.

Quantitative Analysis (binned map data)

- Bin the data (using bins the size of the FWHM of the largest PSF).
- Plot the 160/250 and 250/350 μ m ratios versus H α + 24 μ m emission and versus 3.6 μ m emission
- The relations will indicate how the dust emission in the shorter band is related to the heating sources.

Quantitative Analysis (reproduction of infrared colour maps)

• The infrared colour data are fit with the following equation:

$$\ln\left(\left|\begin{array}{c} \bullet\\ \bullet\\ \bullet\end{array}\right|\right) = \alpha \ln\left(\left|\begin{array}{c} \bullet\\ \bullet\\ \bullet\\ \bullet\end{array}\right| + A_1 \left|\begin{array}{c} \bullet\\ \bullet\\ \bullet\\ \bullet\\ \bullet\end{array}\right|\right) + A_2$$

The ratio of the star formation and evolved star components in the relation gives an indication of how the dust seen in the shorter waveband is heated.

Conclusions from the Herschel colour analysis

- It is possible to identify nearby galaxies where the dust emitting in the far-infrared is:
 - Heated by evolved stars.
 - Heated by star forming regions.
 - Heated by one source or the other (depending on the wavelength).
 - Heated by both young and old stars equally (or ambiguously).
- It is difficult to predict which heating source is the dominant heating source in any specific galaxy without using this type of analysis or more complex modelling.
- However, emission from dust heated by evolved stars could still be related to star formation through the Kennicutt-Schmidt law.

ALMA Observations of Star Formation

ALMA can detect two different forms of emission from photoionized gas:

- Free-free continuum emission
- Millimetre/submillimetre hydrogen recombination line emission

These forms of emission have two advantages over other star formation tracers:

- They directly trace photoionizing stars.
- They are unaffected by dust extinction.

So far, ALMA has detected recombination line emission from three galaxies:

- NGC 253
- NGC 4945
- NGC 5253

The last two galaxies were useful for comparing ALMA-based SFRs to infrared-based SFRs.

Conclusions from the ALMA analysis

- In dusty starbursts, the total infrared flux works reasonably well as a star formation tracer.
- Individual infrared bands do not necessarily trace very dust-obscured star formation effectively.
 - The mid-infrared flux works very poorly.
- Composite star formation tracers may not work well in heavilyobscured star forming regions.

Implications for Galaxy Quenching Studies

- The connection between infrared flux and star formation depends on the galaxy.
 - In normal or non-star-forming galaxies, the dust could just trace the fuel for star formation.
 - In extreme systems, the dust emission is reprocessed energy from star formation.
- Measuring star formation rates from a single infrared band may not be straightforward.
- The galaxy main sequence could be defined in part by the Kennicutt-Schmidt relation if the star formation rate is based on infrared flux.
- In heavily obscured starbursts, star formation could be more important for feedback than expected.